B-IncStrDB ID: 6872EpvgNl Entry date: 2013-03-27 Last revision: 2022-01-18
Structural Formula Sum: Fe0.615 La3.333 O11.333 Ti2.718 [ Help ]
Formula weight: 808.8 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+1/2,x2,x3,x4+1/2 |
6 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
7 | -x1+1/2,-x2,-x3,-x4 |
8 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
9 | x1+3/4,x2+1/2,x3,x4+1/4 |
10 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
11 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
12 | x1+3/4,x2,-x3+1/2,x4+1/4 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.827(5) Å [ Help ]
b: 5.218(4) Å [ Help ]
c: 5.537(3) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.02(5) ° [ Help ]
Volume: 226.1(3) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.083333 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 90 K [ Help ]
μ: 18.677 mm-1 [ Help ]
Total nb. of reflections: 7093 [ Help ]
Nb. of observed reflections: 6809 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0292 [ Help ]
wR(obs): 0.0431 [ Help ]
R(all): 0.0310 [ Help ]
wR(all): 0.0433 [ Help ]
S(all): 2.66 [ Help ]
S(obs): 2.70 [ Help ]
Nb. of reflections: 7093 [ Help ]
Nb. of parameters: 147 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0168 [ Help ]
Δ/σ(mean): 0.0004 [ Help ]
Δρ(max): 5.27 e_Å-3 [ Help ]
Δρ(min): -3.60 e_Å-3 [ Help ]
Extinction method: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) [ Help ]
Extinction coefficient: 1410(60) [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.000401(17) | -0.01749(3) | 0.00289(2) | Uani | 0.00172(4) | 16 | 0.125 | d | ? | ? | ? |
La2 | La | -0.00128(4) | 0.29590(4) | -0.09028(4) | Uani | 0.00192(5) | 16 | 0.0417 | d | ? | ? | ? |
La3 | La | -0.00316(4) | -0.22544(5) | 0.04476(4) | Uani | 0.00432(5) | 16 | 0.0417 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00120(10) | 8 | 0.0214(8) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00120(10) | 8 | 0.0203(8) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00120(10) | 16 | 0.0363(7) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00120(10) | 16 | 0.0053(7) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00120(10) | 16 | 0.0406(6) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00120(10) | 16 | 0.0010(6) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00107(10) | 8 | 0.0213(8) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00107(10) | 8 | 0.0203(8) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00107(10) | 16 | 0.0366(7) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00107(10) | 16 | 0.0051(7) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00107(10) | 16 | 0.0394(6) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00107(10) | 16 | 0.0022(6) | d | ? | ? | ? |
O1 | O | 0.00002(19) | 0.0037(3) | 0.5556(3) | Uani | 0.0034(3) | 16 | 0.2083 | d | ? | ? | ? |
O2 | O | 0.22615(18) | 0.2144(3) | 0.2075(2) | Uani | 0.0038(3) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.77553(18) | 0.2050(3) | 0.2024(2) | Uani | 0.0035(3) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00100(6) | 0.00266(7) | 0.00152(7) | 0.00023(8) | -0.00012(5) | -0.00089(3) |
La2 | La | 0.00067(7) | 0.00357(9) | 0.00151(7) | -0.00079(9) | 0.00075(9) | -0.00151(6) |
La3 | La | 0.00046(7) | 0.00877(11) | 0.00374(8) | 0.00076(10) | 0.00003(10) | -0.00364(7) |
Ti11 | Ti | 0.00125(16) | 0.00125(19) | 0.00110(16) | 0.0001(3) | -0.00055(17) | -0.00015(11) |
Fe11 | Fe | 0.00125(16) | 0.00125(19) | 0.00110(16) | 0.0001(3) | -0.00055(17) | -0.00015(11) |
Ti12 | Ti | 0.00125(16) | 0.00125(19) | 0.00110(16) | 0.0001(3) | -0.00055(17) | -0.00015(11) |
Fe12 | Fe | 0.00125(16) | 0.00125(19) | 0.00110(16) | 0.0001(3) | -0.00055(17) | -0.00015(11) |
Ti13 | Ti | 0.00125(16) | 0.00125(19) | 0.00110(16) | 0.0001(3) | -0.00055(17) | -0.00015(11) |
Fe13 | Fe | 0.00125(16) | 0.00125(19) | 0.00110(16) | 0.0001(3) | -0.00055(17) | -0.00015(11) |
Ti21 | Ti | 0.00130(16) | 0.00118(19) | 0.00072(16) | 0.0002(3) | -0.00048(17) | 0.00013(11) |
Fe21 | Fe | 0.00130(16) | 0.00118(19) | 0.00072(16) | 0.0002(3) | -0.00048(17) | 0.00013(11) |
Ti22 | Ti | 0.00130(16) | 0.00118(19) | 0.00072(16) | 0.0002(3) | -0.00048(17) | 0.00013(11) |
Fe22 | Fe | 0.00130(16) | 0.00118(19) | 0.00072(16) | 0.0002(3) | -0.00048(17) | 0.00013(11) |
Ti23 | Ti | 0.00130(16) | 0.00118(19) | 0.00072(16) | 0.0002(3) | -0.00048(17) | 0.00013(11) |
Fe23 | Fe | 0.00130(16) | 0.00118(19) | 0.00072(16) | 0.0002(3) | -0.00048(17) | 0.00013(11) |
O1 | O | 0.0023(5) | 0.0032(6) | 0.0049(5) | -0.0003(5) | 0.0001(4) | -0.0004(4) |
O2 | O | 0.0037(5) | 0.0041(6) | 0.0036(5) | -0.0003(4) | 0.0000(4) | 0.0004(4) |
O3 | O | 0.0045(5) | 0.0036(6) | 0.0025(5) | 0.0000(4) | 0.0009(4) | 0.0012(4) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.125000 | 0.950000 |
2 | 0.000000 | 0.208333 | 0.950000 |
3 | 0.000000 | 0.250000 | 0.950000 |
4 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.125 |
La2 | 0.107948(3) | 0.0417 |
La3 | -0.102079(4) | 0.0417 |
Ti11 | 0 | 0.0417 |
Fe11 | 0 | 0.0417 |
Ti12 | 0.0417 | 0.0417 |
Fe12 | 0.0417 | 0.0417 |
Ti13 | 0.0833 | 0.0417 |
Fe13 | 0.0833 | 0.0417 |
Ti21 | 0 | 0.0417 |
Fe21 | 0 | 0.0417 |
Ti22 | 0.0417 | 0.0417 |
Fe22 | 0.0417 | 0.0417 |
Ti23 | 0.0833 | 0.0417 |
Fe23 | 0.0833 | 0.0417 |
O1 | 0 | 0.2083 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0059(3) |
Ti11y1 | 0 | 0.1267(3) |
Ti11z1 | 0 | -0.0769(2) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.00226(17) |
Ti11y6 | 0 | 0.02445(15) |
Ti11z6 | 0 | 0.02821(13) |
Fe11x1 | 0 | -0.0059(3) |
Fe11y1 | 0 | 0.1267(3) |
Fe11z1 | 0 | -0.0769(2) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.00226(17) |
Fe11y6 | 0 | 0.02445(15) |
Fe11z6 | 0 | 0.02821(13) |
Ti12x1 | 0 | -0.0059(3) |
Ti12y1 | 0 | 0.1267(3) |
Ti12z1 | 0 | -0.0769(2) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.00226(17) |
Ti12y6 | 0 | 0.02445(15) |
Ti12z6 | 0 | 0.02821(13) |
Fe12x1 | 0 | -0.0059(3) |
Fe12y1 | 0 | 0.1267(3) |
Fe12z1 | 0 | -0.0769(2) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.00226(17) |
Fe12y6 | 0 | 0.02445(15) |
Fe12z6 | 0 | 0.02821(13) |
Ti13x1 | 0 | -0.0059(3) |
Ti13y1 | 0 | 0.1267(3) |
Ti13z1 | 0 | -0.0769(2) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.00226(17) |
Ti13y6 | 0 | 0.02445(15) |
Ti13z6 | 0 | 0.02821(13) |
Fe13x1 | 0 | -0.0059(3) |
Fe13y1 | 0 | 0.1267(3) |
Fe13z1 | 0 | -0.0769(2) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.00226(17) |
Fe13y6 | 0 | 0.02445(15) |
Fe13z6 | 0 | 0.02821(13) |
Ti21x1 | 0 | 0.0023(3) |
Ti21y1 | 0 | 0.1441(3) |
Ti21z1 | 0 | -0.0846(2) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.00184(17) |
Ti21y6 | 0 | 0.02354(15) |
Ti21z6 | 0 | 0.02883(12) |
Fe21x1 | 0 | 0.0023(3) |
Fe21y1 | 0 | 0.1441(3) |
Fe21z1 | 0 | -0.0846(2) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.00184(17) |
Fe21y6 | 0 | 0.02354(15) |
Fe21z6 | 0 | 0.02883(12) |
Ti22x1 | 0 | 0.0023(3) |
Ti22y1 | 0 | 0.1441(3) |
Ti22z1 | 0 | -0.0846(2) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.00184(17) |
Ti22y6 | 0 | 0.02354(15) |
Ti22z6 | 0 | 0.02883(12) |
Fe22x1 | 0 | 0.0023(3) |
Fe22y1 | 0 | 0.1441(3) |
Fe22z1 | 0 | -0.0846(2) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.00184(17) |
Fe22y6 | 0 | 0.02354(15) |
Fe22z6 | 0 | 0.02883(12) |
Ti23x1 | 0 | 0.0023(3) |
Ti23y1 | 0 | 0.1441(3) |
Ti23z1 | 0 | -0.0846(2) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.00184(17) |
Ti23y6 | 0 | 0.02354(15) |
Ti23z6 | 0 | 0.02883(12) |
Fe23x1 | 0 | 0.0023(3) |
Fe23y1 | 0 | 0.1441(3) |
Fe23z1 | 0 | -0.0846(2) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.00184(17) |
Fe23y6 | 0 | 0.02354(15) |
Fe23z6 | 0 | 0.02883(12) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | -0.00016(4) |
La1 | y | 1 | 1 | 0.03182(3) |
La1 | z | 1 | 1 | 0.00235(2) |
La1 | x | 1 | 2 | 0.00011(2) |
La1 | y | 1 | 2 | 0.00132(3) |
La1 | z | 1 | 2 | -0.00083(3) |
O1 | x | 2 | 1 | 0.0005(2) |
O1 | y | 2 | 1 | 0.0108(3) |
O1 | z | 2 | 1 | -0.0136(3) |
O1 | x | 2 | 2 | -0.0007(2) |
O1 | y | 2 | 2 | 0.0137(3) |
O1 | z | 2 | 2 | 0.0007(3) |
O1 | x | 2 | 3 | -0.0011(3) |
O1 | y | 2 | 3 | 0.0015(4) |
O1 | z | 2 | 3 | 0.0076(3) |
O1 | x | 2 | 4 | 0.0007(3) |
O1 | y | 2 | 4 | -0.0143(4) |
O1 | z | 2 | 4 | 0.0023(4) |
O2 | x | 3 | 1 | -0.00064(19) |
O2 | y | 3 | 1 | 0.0343(3) |
O2 | z | 3 | 1 | 0.0034(3) |
O2 | x | 3 | 2 | -0.0098(2) |
O2 | y | 3 | 2 | -0.0061(3) |
O2 | z | 3 | 2 | 0.0147(3) |
O2 | x | 3 | 3 | 0.0114(3) |
O2 | y | 3 | 3 | -0.0059(4) |
O2 | z | 3 | 3 | -0.0084(3) |
O2 | x | 3 | 4 | 0.0054(2) |
O2 | y | 3 | 4 | 0.0088(4) |
O2 | z | 3 | 4 | -0.0019(3) |
O2 | x | 3 | 5 | -0.0118(3) |
O2 | y | 3 | 5 | 0.0058(5) |
O2 | z | 3 | 5 | 0.0045(4) |
O2 | x | 3 | 6 | 0 |
O2 | y | 3 | 6 | 0 |
O2 | z | 3 | 6 | 0 |
O3 | x | 4 | 1 | -0.00011(19) |
O3 | y | 4 | 1 | 0.0347(3) |
O3 | z | 4 | 1 | 0.0010(3) |
O3 | x | 4 | 2 | 0.0057(2) |
O3 | y | 4 | 2 | 0.0015(3) |
O3 | z | 4 | 2 | 0.0170(2) |
O3 | x | 4 | 3 | -0.0121(3) |
O3 | y | 4 | 3 | -0.0047(4) |
O3 | z | 4 | 3 | -0.0062(3) |
O3 | x | 4 | 4 | -0.0026(2) |
O3 | y | 4 | 4 | 0.0061(4) |
O3 | z | 4 | 4 | -0.0012(3) |
O3 | x | 4 | 5 | 0.0124(3) |
O3 | y | 4 | 5 | 0.0045(5) |
O3 | z | 4 | 5 | 0.0023(4) |
O3 | x | 4 | 6 | 0 |
O3 | y | 4 | 6 | 0 |
O3 | z | 4 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00013(4) |
La1 | U22 | 1 | 1 | 0.00071(5) |
La1 | U33 | 1 | 1 | 0.00039(5) |
La1 | U12 | 1 | 1 | -0.00015(5) |
La1 | U13 | 1 | 1 | 0.00001(4) |
La1 | U23 | 1 | 1 | -0.00016(4) |
La1 | U11 | 1 | 2 | 0.00052(4) |
La1 | U22 | 1 | 2 | -0.00047(6) |
La1 | U33 | 1 | 2 | 0.00004(5) |
La1 | U12 | 1 | 2 | -0.00004(8) |
La1 | U13 | 1 | 2 | 0.00023(7) |
La1 | U23 | 1 | 2 | 0.00037(4) |
Structural Formula Sum: Fe0.615 La3.333 O11.333 Ti2.718 [ Help ]
Formula weight: 808.8 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+1/2,x2,x3,x4+1/2 |
6 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
7 | -x1+1/2,-x2,-x3,-x4 |
8 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
9 | x1+3/4,x2+1/2,x3,x4+1/4 |
10 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
11 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
12 | x1+3/4,x2,-x3+1/2,x4+1/4 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8266(15) Å [ Help ]
b: 5.2203(13) Å [ Help ]
c: 5.5404(11) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 89.988(16) ° [ Help ]
Volume: 226.37(8) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.083333 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 150 K [ Help ]
μ: 18.657 mm-1 [ Help ]
Total nb. of reflections: 6469 [ Help ]
Nb. of observed reflections: 6210 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0287 [ Help ]
wR(obs): 0.0428 [ Help ]
R(all): 0.0305 [ Help ]
wR(all): 0.0431 [ Help ]
S(all): 2.66 [ Help ]
S(obs): 2.70 [ Help ]
Nb. of reflections: 6469 [ Help ]
Nb. of parameters: 147 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0149 [ Help ]
Δ/σ(mean): 0.0004 [ Help ]
Δρ(max): 4.28 e_Å-3 [ Help ]
Δρ(min): -3.18 e_Å-3 [ Help ]
Extinction method: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) [ Help ]
Extinction coefficient: 1430(60) [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.000404(18) | -0.01712(3) | 0.00283(2) | Uani | 0.00209(4) | 16 | 0.125 | d | ? | ? | ? |
La2 | La | -0.00129(4) | 0.29525(4) | -0.09007(4) | Uani | 0.00240(5) | 16 | 0.0417 | d | ? | ? | ? |
La3 | La | -0.00303(4) | -0.22652(5) | 0.04591(5) | Uani | 0.00552(6) | 16 | 0.0417 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00127(11) | 8 | 0.0216(9) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00127(11) | 8 | 0.0200(9) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00127(11) | 16 | 0.0356(7) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00127(11) | 16 | 0.0061(7) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00127(11) | 16 | 0.0403(6) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00127(11) | 16 | 0.0014(6) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00110(10) | 8 | 0.0216(9) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00110(10) | 8 | 0.0200(9) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00110(10) | 16 | 0.0365(7) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00110(10) | 16 | 0.0051(7) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00110(10) | 16 | 0.0389(6) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00110(10) | 16 | 0.0028(6) | d | ? | ? | ? |
O1 | O | -0.0001(2) | 0.0035(3) | 0.5550(3) | Uani | 0.0037(3) | 16 | 0.2083 | d | ? | ? | ? |
O2 | O | 0.2262(2) | 0.2147(3) | 0.2076(2) | Uani | 0.0037(3) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.77522(19) | 0.2053(3) | 0.2024(2) | Uani | 0.0038(3) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00132(7) | 0.00304(8) | 0.00192(7) | 0.00022(8) | -0.00007(6) | -0.00106(3) |
La2 | La | 0.00075(8) | 0.00447(10) | 0.00198(8) | -0.00059(10) | 0.00061(10) | -0.00189(7) |
La3 | La | 0.00060(8) | 0.01097(12) | 0.00500(9) | 0.00070(11) | -0.00005(12) | -0.00439(8) |
Ti11 | Ti | 0.00144(17) | 0.0013(2) | 0.00109(17) | 0.0005(3) | -0.00083(19) | -0.00023(12) |
Fe11 | Fe | 0.00144(17) | 0.0013(2) | 0.00109(17) | 0.0005(3) | -0.00083(19) | -0.00023(12) |
Ti12 | Ti | 0.00144(17) | 0.0013(2) | 0.00109(17) | 0.0005(3) | -0.00083(19) | -0.00023(12) |
Fe12 | Fe | 0.00144(17) | 0.0013(2) | 0.00109(17) | 0.0005(3) | -0.00083(19) | -0.00023(12) |
Ti13 | Ti | 0.00144(17) | 0.0013(2) | 0.00109(17) | 0.0005(3) | -0.00083(19) | -0.00023(12) |
Fe13 | Fe | 0.00144(17) | 0.0013(2) | 0.00109(17) | 0.0005(3) | -0.00083(19) | -0.00023(12) |
Ti21 | Ti | 0.00146(17) | 0.0012(2) | 0.00065(17) | 0.0005(3) | -0.00065(19) | 0.00020(12) |
Fe21 | Fe | 0.00146(17) | 0.0012(2) | 0.00065(17) | 0.0005(3) | -0.00065(19) | 0.00020(12) |
Ti22 | Ti | 0.00146(17) | 0.0012(2) | 0.00065(17) | 0.0005(3) | -0.00065(19) | 0.00020(12) |
Fe22 | Fe | 0.00146(17) | 0.0012(2) | 0.00065(17) | 0.0005(3) | -0.00065(19) | 0.00020(12) |
Ti23 | Ti | 0.00146(17) | 0.0012(2) | 0.00065(17) | 0.0005(3) | -0.00065(19) | 0.00020(12) |
Fe23 | Fe | 0.00146(17) | 0.0012(2) | 0.00065(17) | 0.0005(3) | -0.00065(19) | 0.00020(12) |
O1 | O | 0.0022(5) | 0.0033(6) | 0.0055(6) | -0.0006(6) | 0.0001(4) | -0.0005(4) |
O2 | O | 0.0037(6) | 0.0039(6) | 0.0035(5) | -0.0002(4) | 0.0002(4) | 0.0004(4) |
O3 | O | 0.0054(6) | 0.0037(6) | 0.0022(5) | 0.0000(4) | 0.0005(4) | 0.0017(4) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.125000 | 0.950000 |
2 | 0.000000 | 0.208333 | 0.950000 |
3 | 0.000000 | 0.250000 | 0.950000 |
4 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.125 |
La2 | 0.107894(4) | 0.0417 |
La3 | -0.102169(4) | 0.0417 |
Ti11 | 0 | 0.0417 |
Fe11 | 0 | 0.0417 |
Ti12 | 0.0417 | 0.0417 |
Fe12 | 0.0417 | 0.0417 |
Ti13 | 0.0833 | 0.0417 |
Fe13 | 0.0833 | 0.0417 |
Ti21 | 0 | 0.0417 |
Fe21 | 0 | 0.0417 |
Ti22 | 0.0417 | 0.0417 |
Fe22 | 0.0417 | 0.0417 |
Ti23 | 0.0833 | 0.0417 |
Fe23 | 0.0833 | 0.0417 |
O1 | 0 | 0.2083 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0063(3) |
Ti11y1 | 0 | 0.1267(3) |
Ti11z1 | 0 | -0.0775(3) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.00161(18) |
Ti11y6 | 0 | 0.02455(15) |
Ti11z6 | 0 | 0.02839(13) |
Fe11x1 | 0 | -0.0063(3) |
Fe11y1 | 0 | 0.1267(3) |
Fe11z1 | 0 | -0.0775(3) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.00161(18) |
Fe11y6 | 0 | 0.02455(15) |
Fe11z6 | 0 | 0.02839(13) |
Ti12x1 | 0 | -0.0063(3) |
Ti12y1 | 0 | 0.1267(3) |
Ti12z1 | 0 | -0.0775(3) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.00161(18) |
Ti12y6 | 0 | 0.02455(15) |
Ti12z6 | 0 | 0.02839(13) |
Fe12x1 | 0 | -0.0063(3) |
Fe12y1 | 0 | 0.1267(3) |
Fe12z1 | 0 | -0.0775(3) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.00161(18) |
Fe12y6 | 0 | 0.02455(15) |
Fe12z6 | 0 | 0.02839(13) |
Ti13x1 | 0 | -0.0063(3) |
Ti13y1 | 0 | 0.1267(3) |
Ti13z1 | 0 | -0.0775(3) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.00161(18) |
Ti13y6 | 0 | 0.02455(15) |
Ti13z6 | 0 | 0.02839(13) |
Fe13x1 | 0 | -0.0063(3) |
Fe13y1 | 0 | 0.1267(3) |
Fe13z1 | 0 | -0.0775(3) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.00161(18) |
Fe13y6 | 0 | 0.02455(15) |
Fe13z6 | 0 | 0.02839(13) |
Ti21x1 | 0 | 0.0017(3) |
Ti21y1 | 0 | 0.1440(3) |
Ti21z1 | 0 | -0.0853(3) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.00235(18) |
Ti21y6 | 0 | 0.02337(15) |
Ti21z6 | 0 | 0.02903(13) |
Fe21x1 | 0 | 0.0017(3) |
Fe21y1 | 0 | 0.1440(3) |
Fe21z1 | 0 | -0.0853(3) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.00235(18) |
Fe21y6 | 0 | 0.02337(15) |
Fe21z6 | 0 | 0.02903(13) |
Ti22x1 | 0 | 0.0017(3) |
Ti22y1 | 0 | 0.1440(3) |
Ti22z1 | 0 | -0.0853(3) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.00235(18) |
Ti22y6 | 0 | 0.02337(15) |
Ti22z6 | 0 | 0.02903(13) |
Fe22x1 | 0 | 0.0017(3) |
Fe22y1 | 0 | 0.1440(3) |
Fe22z1 | 0 | -0.0853(3) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.00235(18) |
Fe22y6 | 0 | 0.02337(15) |
Fe22z6 | 0 | 0.02903(13) |
Ti23x1 | 0 | 0.0017(3) |
Ti23y1 | 0 | 0.1440(3) |
Ti23z1 | 0 | -0.0853(3) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.00235(18) |
Ti23y6 | 0 | 0.02337(15) |
Ti23z6 | 0 | 0.02903(13) |
Fe23x1 | 0 | 0.0017(3) |
Fe23y1 | 0 | 0.1440(3) |
Fe23z1 | 0 | -0.0853(3) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.00235(18) |
Fe23y6 | 0 | 0.02337(15) |
Fe23z6 | 0 | 0.02903(13) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | -0.00049(4) |
La1 | y | 1 | 1 | 0.03201(3) |
La1 | z | 1 | 1 | 0.00230(2) |
La1 | x | 1 | 2 | 0.00017(2) |
La1 | y | 1 | 2 | 0.00131(3) |
La1 | z | 1 | 2 | -0.00087(3) |
O1 | x | 2 | 1 | 0.0003(3) |
O1 | y | 2 | 1 | 0.0109(3) |
O1 | z | 2 | 1 | -0.0134(3) |
O1 | x | 2 | 2 | -0.0005(3) |
O1 | y | 2 | 2 | 0.0138(3) |
O1 | z | 2 | 2 | 0.0005(3) |
O1 | x | 2 | 3 | -0.0010(3) |
O1 | y | 2 | 3 | 0.0020(4) |
O1 | z | 2 | 3 | 0.0074(3) |
O1 | x | 2 | 4 | 0.0003(3) |
O1 | y | 2 | 4 | -0.0141(4) |
O1 | z | 2 | 4 | 0.0020(4) |
O2 | x | 3 | 1 | -0.0006(2) |
O2 | y | 3 | 1 | 0.0341(3) |
O2 | z | 3 | 1 | 0.0036(3) |
O2 | x | 3 | 2 | -0.0096(2) |
O2 | y | 3 | 2 | -0.0058(3) |
O2 | z | 3 | 2 | 0.0149(3) |
O2 | x | 3 | 3 | 0.0116(3) |
O2 | y | 3 | 3 | -0.0058(4) |
O2 | z | 3 | 3 | -0.0082(3) |
O2 | x | 3 | 4 | 0.0052(2) |
O2 | y | 3 | 4 | 0.0085(4) |
O2 | z | 3 | 4 | -0.0023(3) |
O2 | x | 3 | 5 | -0.0117(3) |
O2 | y | 3 | 5 | 0.0056(5) |
O2 | z | 3 | 5 | 0.0044(4) |
O2 | x | 3 | 6 | 0 |
O2 | y | 3 | 6 | 0 |
O2 | z | 3 | 6 | 0 |
O3 | x | 4 | 1 | -0.0001(2) |
O3 | y | 4 | 1 | 0.0347(3) |
O3 | z | 4 | 1 | 0.0011(3) |
O3 | x | 4 | 2 | 0.0055(2) |
O3 | y | 4 | 2 | 0.0015(3) |
O3 | z | 4 | 2 | 0.0173(3) |
O3 | x | 4 | 3 | -0.0119(3) |
O3 | y | 4 | 3 | -0.0047(4) |
O3 | z | 4 | 3 | -0.0062(3) |
O3 | x | 4 | 4 | -0.0022(3) |
O3 | y | 4 | 4 | 0.0058(4) |
O3 | z | 4 | 4 | -0.0015(3) |
O3 | x | 4 | 5 | 0.0126(3) |
O3 | y | 4 | 5 | 0.0046(5) |
O3 | z | 4 | 5 | 0.0025(4) |
O3 | x | 4 | 6 | 0 |
O3 | y | 4 | 6 | 0 |
O3 | z | 4 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00010(4) |
La1 | U22 | 1 | 1 | 0.00081(5) |
La1 | U33 | 1 | 1 | 0.00051(5) |
La1 | U12 | 1 | 1 | -0.00038(5) |
La1 | U13 | 1 | 1 | 0.00009(4) |
La1 | U23 | 1 | 1 | -0.00019(4) |
La1 | U11 | 1 | 2 | 0.00065(5) |
La1 | U22 | 1 | 2 | -0.00044(6) |
La1 | U33 | 1 | 2 | -0.00004(5) |
La1 | U12 | 1 | 2 | -0.00040(8) |
La1 | U13 | 1 | 2 | 0.00013(9) |
La1 | U23 | 1 | 2 | 0.00041(5) |
Structural Formula Sum: Fe0.615 La3.333 O11.333 Ti2.718 [ Help ]
Formula weight: 808.8 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+1/2,x2,x3,x4+1/2 |
6 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
7 | -x1+1/2,-x2,-x3,-x4 |
8 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
9 | x1+3/4,x2+1/2,x3,x4+1/4 |
10 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
11 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
12 | x1+3/4,x2,-x3+1/2,x4+1/4 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8295(16) Å [ Help ]
b: 5.2213(14) Å [ Help ]
c: 5.5418(12) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 89.994(17) ° [ Help ]
Volume: 226.55(9) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.083333 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 200 K [ Help ]
μ: 18.606 mm-1 [ Help ]
Total nb. of reflections: 6471 [ Help ]
Nb. of observed reflections: 6204 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0288 [ Help ]
wR(obs): 0.0417 [ Help ]
R(all): 0.0307 [ Help ]
wR(all): 0.0420 [ Help ]
S(all): 2.59 [ Help ]
S(obs): 2.63 [ Help ]
Nb. of reflections: 6471 [ Help ]
Nb. of parameters: 147 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0135 [ Help ]
Δ/σ(mean): 0.0005 [ Help ]
Δρ(max): 4.15 e_Å-3 [ Help ]
Δρ(min): -3.30 e_Å-3 [ Help ]
Extinction method: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) [ Help ]
Extinction coefficient: 1410(60) [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.000364(18) | -0.01673(3) | 0.00277(2) | Uani | 0.00289(4) | 16 | 0.125 | d | ? | ? | ? |
La2 | La | -0.00119(4) | 0.29468(4) | -0.08986(4) | Uani | 0.00324(5) | 16 | 0.0417 | d | ? | ? | ? |
La3 | La | -0.00307(4) | -0.22746(5) | 0.04688(5) | Uani | 0.00691(6) | 16 | 0.0417 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00171(10) | 8 | 0.0217(8) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00171(10) | 8 | 0.0200(8) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00171(10) | 16 | 0.0359(7) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00171(10) | 16 | 0.0057(7) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00171(10) | 16 | 0.0416(6) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00171(10) | 16 | 0.0001(6) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00149(10) | 8 | 0.0217(8) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00149(10) | 8 | 0.0200(8) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00149(10) | 16 | 0.0371(6) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00149(10) | 16 | 0.0045(6) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00149(10) | 16 | 0.0399(6) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00149(10) | 16 | 0.0017(6) | d | ? | ? | ? |
O1 | O | -0.0001(2) | 0.0036(3) | 0.5544(3) | Uani | 0.0045(3) | 16 | 0.2083 | d | ? | ? | ? |
O2 | O | 0.22648(20) | 0.2148(3) | 0.2074(2) | Uani | 0.0045(3) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.77499(19) | 0.2056(3) | 0.2024(2) | Uani | 0.0046(3) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00199(7) | 0.00384(7) | 0.00283(7) | 0.00030(8) | -0.00013(6) | -0.00126(3) |
La2 | La | 0.00141(8) | 0.00564(10) | 0.00266(8) | -0.00075(10) | 0.00081(10) | -0.00198(7) |
La3 | La | 0.00113(8) | 0.01322(12) | 0.00638(9) | 0.00096(11) | -0.00008(12) | -0.00508(8) |
Ti11 | Ti | 0.00205(17) | 0.0016(2) | 0.00144(17) | 0.0000(3) | -0.00072(19) | -0.00007(12) |
Fe11 | Fe | 0.00205(17) | 0.0016(2) | 0.00144(17) | 0.0000(3) | -0.00072(19) | -0.00007(12) |
Ti12 | Ti | 0.00205(17) | 0.0016(2) | 0.00144(17) | 0.0000(3) | -0.00072(19) | -0.00007(12) |
Fe12 | Fe | 0.00205(17) | 0.0016(2) | 0.00144(17) | 0.0000(3) | -0.00072(19) | -0.00007(12) |
Ti13 | Ti | 0.00205(17) | 0.0016(2) | 0.00144(17) | 0.0000(3) | -0.00072(19) | -0.00007(12) |
Fe13 | Fe | 0.00205(17) | 0.0016(2) | 0.00144(17) | 0.0000(3) | -0.00072(19) | -0.00007(12) |
Ti21 | Ti | 0.00205(17) | 0.00145(19) | 0.00098(17) | -0.0002(3) | -0.00042(19) | 0.00023(12) |
Fe21 | Fe | 0.00205(17) | 0.00145(19) | 0.00098(17) | -0.0002(3) | -0.00042(19) | 0.00023(12) |
Ti22 | Ti | 0.00205(17) | 0.00145(19) | 0.00098(17) | -0.0002(3) | -0.00042(19) | 0.00023(12) |
Fe22 | Fe | 0.00205(17) | 0.00145(19) | 0.00098(17) | -0.0002(3) | -0.00042(19) | 0.00023(12) |
Ti23 | Ti | 0.00205(17) | 0.00145(19) | 0.00098(17) | -0.0002(3) | -0.00042(19) | 0.00023(12) |
Fe23 | Fe | 0.00205(17) | 0.00145(19) | 0.00098(17) | -0.0002(3) | -0.00042(19) | 0.00023(12) |
O1 | O | 0.0027(5) | 0.0045(6) | 0.0062(5) | -0.0005(6) | 0.0003(4) | -0.0008(4) |
O2 | O | 0.0050(6) | 0.0045(6) | 0.0041(5) | 0.0002(4) | 0.0000(4) | 0.0007(4) |
O3 | O | 0.0060(6) | 0.0043(6) | 0.0034(5) | 0.0002(4) | 0.0006(4) | 0.0021(4) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.125000 | 0.950000 |
2 | 0.000000 | 0.208333 | 0.950000 |
3 | 0.000000 | 0.250000 | 0.950000 |
4 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.125 |
La2 | 0.107847(4) | 0.0417 |
La3 | -0.102247(4) | 0.0417 |
Ti11 | 0 | 0.0417 |
Fe11 | 0 | 0.0417 |
Ti12 | 0.0417 | 0.0417 |
Fe12 | 0.0417 | 0.0417 |
Ti13 | 0.0833 | 0.0417 |
Fe13 | 0.0833 | 0.0417 |
Ti21 | 0 | 0.0417 |
Fe21 | 0 | 0.0417 |
Ti22 | 0.0417 | 0.0417 |
Fe22 | 0.0417 | 0.0417 |
Ti23 | 0.0833 | 0.0417 |
Fe23 | 0.0833 | 0.0417 |
O1 | 0 | 0.2083 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0056(3) |
Ti11y1 | 0 | 0.1276(3) |
Ti11z1 | 0 | -0.0781(3) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.00243(18) |
Ti11y6 | 0 | 0.02424(15) |
Ti11z6 | 0 | 0.02846(13) |
Fe11x1 | 0 | -0.0056(3) |
Fe11y1 | 0 | 0.1276(3) |
Fe11z1 | 0 | -0.0781(3) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.00243(18) |
Fe11y6 | 0 | 0.02424(15) |
Fe11z6 | 0 | 0.02846(13) |
Ti12x1 | 0 | -0.0056(3) |
Ti12y1 | 0 | 0.1276(3) |
Ti12z1 | 0 | -0.0781(3) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.00243(18) |
Ti12y6 | 0 | 0.02424(15) |
Ti12z6 | 0 | 0.02846(13) |
Fe12x1 | 0 | -0.0056(3) |
Fe12y1 | 0 | 0.1276(3) |
Fe12z1 | 0 | -0.0781(3) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.00243(18) |
Fe12y6 | 0 | 0.02424(15) |
Fe12z6 | 0 | 0.02846(13) |
Ti13x1 | 0 | -0.0056(3) |
Ti13y1 | 0 | 0.1276(3) |
Ti13z1 | 0 | -0.0781(3) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.00243(18) |
Ti13y6 | 0 | 0.02424(15) |
Ti13z6 | 0 | 0.02846(13) |
Fe13x1 | 0 | -0.0056(3) |
Fe13y1 | 0 | 0.1276(3) |
Fe13z1 | 0 | -0.0781(3) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.00243(18) |
Fe13y6 | 0 | 0.02424(15) |
Fe13z6 | 0 | 0.02846(13) |
Ti21x1 | 0 | 0.0020(3) |
Ti21y1 | 0 | 0.1441(3) |
Ti21z1 | 0 | -0.0855(2) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.00151(18) |
Ti21y6 | 0 | 0.02327(15) |
Ti21z6 | 0 | 0.02908(12) |
Fe21x1 | 0 | 0.0020(3) |
Fe21y1 | 0 | 0.1441(3) |
Fe21z1 | 0 | -0.0855(2) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.00151(18) |
Fe21y6 | 0 | 0.02327(15) |
Fe21z6 | 0 | 0.02908(12) |
Ti22x1 | 0 | 0.0020(3) |
Ti22y1 | 0 | 0.1441(3) |
Ti22z1 | 0 | -0.0855(2) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.00151(18) |
Ti22y6 | 0 | 0.02327(15) |
Ti22z6 | 0 | 0.02908(12) |
Fe22x1 | 0 | 0.0020(3) |
Fe22y1 | 0 | 0.1441(3) |
Fe22z1 | 0 | -0.0855(2) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.00151(18) |
Fe22y6 | 0 | 0.02327(15) |
Fe22z6 | 0 | 0.02908(12) |
Ti23x1 | 0 | 0.0020(3) |
Ti23y1 | 0 | 0.1441(3) |
Ti23z1 | 0 | -0.0855(2) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.00151(18) |
Ti23y6 | 0 | 0.02327(15) |
Ti23z6 | 0 | 0.02908(12) |
Fe23x1 | 0 | 0.0020(3) |
Fe23y1 | 0 | 0.1441(3) |
Fe23z1 | 0 | -0.0855(2) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.00151(18) |
Fe23y6 | 0 | 0.02327(15) |
Fe23z6 | 0 | 0.02908(12) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | -0.00007(5) |
La1 | y | 1 | 1 | 0.03225(3) |
La1 | z | 1 | 1 | 0.00227(2) |
La1 | x | 1 | 2 | 0.00013(2) |
La1 | y | 1 | 2 | 0.00127(3) |
La1 | z | 1 | 2 | -0.00092(3) |
O1 | x | 2 | 1 | 0.0004(3) |
O1 | y | 2 | 1 | 0.0112(3) |
O1 | z | 2 | 1 | -0.0136(3) |
O1 | x | 2 | 2 | -0.0005(3) |
O1 | y | 2 | 2 | 0.0135(3) |
O1 | z | 2 | 2 | 0.0009(3) |
O1 | x | 2 | 3 | -0.0008(3) |
O1 | y | 2 | 3 | 0.0017(4) |
O1 | z | 2 | 3 | 0.0073(3) |
O1 | x | 2 | 4 | 0.0005(3) |
O1 | y | 2 | 4 | -0.0143(4) |
O1 | z | 2 | 4 | 0.0023(4) |
O2 | x | 3 | 1 | -0.0006(2) |
O2 | y | 3 | 1 | 0.0341(3) |
O2 | z | 3 | 1 | 0.0038(3) |
O2 | x | 3 | 2 | -0.0095(2) |
O2 | y | 3 | 2 | -0.0058(3) |
O2 | z | 3 | 2 | 0.0150(3) |
O2 | x | 3 | 3 | 0.0113(3) |
O2 | y | 3 | 3 | -0.0060(4) |
O2 | z | 3 | 3 | -0.0085(3) |
O2 | x | 3 | 4 | 0.0052(2) |
O2 | y | 3 | 4 | 0.0083(3) |
O2 | z | 3 | 4 | -0.0021(3) |
O2 | x | 3 | 5 | -0.0117(3) |
O2 | y | 3 | 5 | 0.0053(5) |
O2 | z | 3 | 5 | 0.0046(4) |
O2 | x | 3 | 6 | 0 |
O2 | y | 3 | 6 | 0 |
O2 | z | 3 | 6 | 0 |
O3 | x | 4 | 1 | 0.0000(2) |
O3 | y | 4 | 1 | 0.0350(3) |
O3 | z | 4 | 1 | 0.0012(3) |
O3 | x | 4 | 2 | 0.0056(2) |
O3 | y | 4 | 2 | 0.0011(3) |
O3 | z | 4 | 2 | 0.0175(3) |
O3 | x | 4 | 3 | -0.0119(3) |
O3 | y | 4 | 3 | -0.0052(4) |
O3 | z | 4 | 3 | -0.0062(3) |
O3 | x | 4 | 4 | -0.0025(2) |
O3 | y | 4 | 4 | 0.0060(3) |
O3 | z | 4 | 4 | -0.0016(3) |
O3 | x | 4 | 5 | 0.0126(3) |
O3 | y | 4 | 5 | 0.0050(5) |
O3 | z | 4 | 5 | 0.0024(4) |
O3 | x | 4 | 6 | 0 |
O3 | y | 4 | 6 | 0 |
O3 | z | 4 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00019(4) |
La1 | U22 | 1 | 1 | 0.00094(5) |
La1 | U33 | 1 | 1 | 0.00052(5) |
La1 | U12 | 1 | 1 | -0.00005(5) |
La1 | U13 | 1 | 1 | 0.00002(4) |
La1 | U23 | 1 | 1 | -0.00025(4) |
La1 | U11 | 1 | 2 | 0.00078(5) |
La1 | U22 | 1 | 2 | -0.00048(6) |
La1 | U33 | 1 | 2 | -0.00007(5) |
La1 | U12 | 1 | 2 | -0.00017(9) |
La1 | U13 | 1 | 2 | 0.00030(9) |
La1 | U23 | 1 | 2 | 0.00046(4) |
Structural Formula Sum: Fe0.615 La3.333 O11.333 Ti2.718 [ Help ]
Formula weight: 808.8 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+1/2,x2,x3,x4+1/2 |
6 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
7 | -x1+1/2,-x2,-x3,-x4 |
8 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
9 | x1+3/4,x2+1/2,x3,x4+1/4 |
10 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
11 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
12 | x1+3/4,x2,-x3+1/2,x4+1/4 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8339(17) Å [ Help ]
b: 5.2222(15) Å [ Help ]
c: 5.5444(13) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.007(17) ° [ Help ]
Volume: 226.82(10) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.083333 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 250 K [ Help ]
μ: 18.62 mm-1 [ Help ]
Total nb. of reflections: 6510 [ Help ]
Nb. of observed reflections: 6146 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0332 [ Help ]
wR(obs): 0.0479 [ Help ]
R(all): 0.0357 [ Help ]
wR(all): 0.0481 [ Help ]
S(all): 2.72 [ Help ]
S(obs): 2.79 [ Help ]
Nb. of reflections: 6510 [ Help ]
Nb. of parameters: 146 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0061 [ Help ]
Δ/σ(mean): 0.0005 [ Help ]
Δρ(max): 4.63 e_Å-3 [ Help ]
Δρ(min): -3.21 e_Å-3 [ Help ]
Extinction method: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) [ Help ]
Extinction coefficient: 1370(60) [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00034(2) | -0.01624(4) | 0.00265(3) | Uani | 0.00405(5) | 16 | 0.125 | d | ? | ? | ? |
La2 | La | -0.00100(5) | 0.29393(5) | -0.08955(5) | Uani | 0.00451(6) | 16 | 0.0417 | d | ? | ? | ? |
La3 | La | -0.00314(5) | -0.22850(6) | 0.04799(5) | Uani | 0.00871(7) | 16 | 0.0417 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00262(12) | 8 | 0.0223(9) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00262(12) | 8 | 0.0194(9) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00262(12) | 16 | 0.0342(7) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00262(12) | 16 | 0.0074(7) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00262(12) | 16 | 0.0417 | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00239(12) | 8 | 0.0222(9) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00239(12) | 8 | 0.0194(9) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00239(12) | 16 | 0.0356(7) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00239(12) | 16 | 0.0061(7) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00239(12) | 16 | 0.0402(6) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00239(12) | 16 | 0.0015(6) | d | ? | ? | ? |
O1 | O | -0.0003(2) | 0.0036(3) | 0.5539(3) | Uani | 0.0059(4) | 16 | 0.2083 | d | ? | ? | ? |
O2 | O | 0.2267(2) | 0.2147(3) | 0.2073(3) | Uani | 0.0057(4) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7743(2) | 0.2060(3) | 0.2025(3) | Uani | 0.0057(4) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00275(8) | 0.00543(9) | 0.00398(8) | 0.00007(10) | -0.00027(8) | -0.00140(4) |
La2 | La | 0.00208(9) | 0.00777(12) | 0.00369(9) | -0.00109(12) | 0.00083(12) | -0.00232(8) |
La3 | La | 0.00162(10) | 0.01636(15) | 0.00816(11) | 0.00120(14) | -0.00048(14) | -0.00588(10) |
Ti11 | Ti | 0.0029(2) | 0.0029(2) | 0.00200(19) | -0.0012(4) | -0.0002(2) | -0.00018(14) |
Fe11 | Fe | 0.0029(2) | 0.0029(2) | 0.00200(19) | -0.0012(4) | -0.0002(2) | -0.00018(14) |
Ti12 | Ti | 0.0029(2) | 0.0029(2) | 0.00200(19) | -0.0012(4) | -0.0002(2) | -0.00018(14) |
Fe12 | Fe | 0.0029(2) | 0.0029(2) | 0.00200(19) | -0.0012(4) | -0.0002(2) | -0.00018(14) |
Ti13 | Ti | 0.0029(2) | 0.0029(2) | 0.00200(19) | -0.0012(4) | -0.0002(2) | -0.00018(14) |
Ti21 | Ti | 0.0028(2) | 0.0026(2) | 0.00181(19) | -0.0012(3) | 0.0001(2) | 0.00015(14) |
Fe21 | Fe | 0.0028(2) | 0.0026(2) | 0.00181(19) | -0.0012(3) | 0.0001(2) | 0.00015(14) |
Ti22 | Ti | 0.0028(2) | 0.0026(2) | 0.00181(19) | -0.0012(3) | 0.0001(2) | 0.00015(14) |
Fe22 | Fe | 0.0028(2) | 0.0026(2) | 0.00181(19) | -0.0012(3) | 0.0001(2) | 0.00015(14) |
Ti23 | Ti | 0.0028(2) | 0.0026(2) | 0.00181(19) | -0.0012(3) | 0.0001(2) | 0.00015(14) |
Fe23 | Fe | 0.0028(2) | 0.0026(2) | 0.00181(19) | -0.0012(3) | 0.0001(2) | 0.00015(14) |
O1 | O | 0.0034(6) | 0.0066(7) | 0.0077(7) | -0.0010(7) | 0.0002(5) | -0.0005(5) |
O2 | O | 0.0055(7) | 0.0062(7) | 0.0053(6) | 0.0003(5) | 0.0000(5) | 0.0007(5) |
O3 | O | 0.0072(7) | 0.0060(7) | 0.0038(6) | 0.0002(5) | 0.0005(5) | 0.0027(5) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.125000 | 0.950000 |
2 | 0.000000 | 0.208333 | 0.950000 |
3 | 0.000000 | 0.250000 | 0.950000 |
4 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.125 |
La2 | 0.107785(4) | 0.0417 |
La3 | -0.102334(5) | 0.0417 |
Ti11 | 0 | 0.0417 |
Fe11 | 0 | 0.0417 |
Ti12 | 0.0417 | 0.0417 |
Fe12 | 0.0417 | 0.0417 |
Ti13 | 0.0833 | 0.0417 |
Ti21 | 0 | 0.0417 |
Fe21 | 0 | 0.0417 |
Ti22 | 0.0417 | 0.0417 |
Fe22 | 0.0417 | 0.0417 |
Ti23 | 0.0833 | 0.0417 |
Fe23 | 0.0833 | 0.0417 |
O1 | 0 | 0.2083 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0059(4) |
Ti11y1 | 0 | 0.1279(3) |
Ti11z1 | 0 | -0.0792(3) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0013(2) |
Ti11y6 | 0 | 0.02413(17) |
Ti11z6 | 0 | 0.02867(15) |
Fe11x1 | 0 | -0.0059(4) |
Fe11y1 | 0 | 0.1279(3) |
Fe11z1 | 0 | -0.0792(3) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0013(2) |
Fe11y6 | 0 | 0.02413(17) |
Fe11z6 | 0 | 0.02867(15) |
Ti12x1 | 0 | -0.0059(4) |
Ti12y1 | 0 | 0.1279(3) |
Ti12z1 | 0 | -0.0792(3) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0013(2) |
Ti12y6 | 0 | 0.02413(17) |
Ti12z6 | 0 | 0.02867(15) |
Fe12x1 | 0 | -0.0059(4) |
Fe12y1 | 0 | 0.1279(3) |
Fe12z1 | 0 | -0.0792(3) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0013(2) |
Fe12y6 | 0 | 0.02413(17) |
Fe12z6 | 0 | 0.02867(15) |
Ti13x1 | 0 | -0.0059(4) |
Ti13y1 | 0 | 0.1279(3) |
Ti13z1 | 0 | -0.0792(3) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0013(2) |
Ti13y6 | 0 | 0.02413(17) |
Ti13z6 | 0 | 0.02867(15) |
Ti21x1 | 0 | 0.0012(4) |
Ti21y1 | 0 | 0.1440(3) |
Ti21z1 | 0 | -0.0865(3) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0025(2) |
Ti21y6 | 0 | 0.02303(17) |
Ti21z6 | 0 | 0.02934(15) |
Fe21x1 | 0 | 0.0012(4) |
Fe21y1 | 0 | 0.1440(3) |
Fe21z1 | 0 | -0.0865(3) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0025(2) |
Fe21y6 | 0 | 0.02303(17) |
Fe21z6 | 0 | 0.02934(15) |
Ti22x1 | 0 | 0.0012(4) |
Ti22y1 | 0 | 0.1440(3) |
Ti22z1 | 0 | -0.0865(3) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0025(2) |
Ti22y6 | 0 | 0.02303(17) |
Ti22z6 | 0 | 0.02934(15) |
Fe22x1 | 0 | 0.0012(4) |
Fe22y1 | 0 | 0.1440(3) |
Fe22z1 | 0 | -0.0865(3) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0025(2) |
Fe22y6 | 0 | 0.02303(17) |
Fe22z6 | 0 | 0.02934(15) |
Ti23x1 | 0 | 0.0012(4) |
Ti23y1 | 0 | 0.1440(3) |
Ti23z1 | 0 | -0.0865(3) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0025(2) |
Ti23y6 | 0 | 0.02303(17) |
Ti23z6 | 0 | 0.02934(15) |
Fe23x1 | 0 | 0.0012(4) |
Fe23y1 | 0 | 0.1440(3) |
Fe23z1 | 0 | -0.0865(3) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0025(2) |
Fe23y6 | 0 | 0.02303(17) |
Fe23z6 | 0 | 0.02934(15) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | -0.00030(6) |
La1 | y | 1 | 1 | 0.03244(3) |
La1 | z | 1 | 1 | 0.00219(3) |
La1 | x | 1 | 2 | 0.00018(3) |
La1 | y | 1 | 2 | 0.00121(4) |
La1 | z | 1 | 2 | -0.00098(4) |
O1 | x | 2 | 1 | 0.0003(3) |
O1 | y | 2 | 1 | 0.0109(4) |
O1 | z | 2 | 1 | -0.0136(3) |
O1 | x | 2 | 2 | -0.0005(3) |
O1 | y | 2 | 2 | 0.0137(4) |
O1 | z | 2 | 2 | 0.0017(4) |
O1 | x | 2 | 3 | -0.0007(4) |
O1 | y | 2 | 3 | 0.0021(4) |
O1 | z | 2 | 3 | 0.0075(4) |
O1 | x | 2 | 4 | 0.0007(4) |
O1 | y | 2 | 4 | -0.0144(5) |
O1 | z | 2 | 4 | 0.0016(5) |
O2 | x | 3 | 1 | -0.0004(2) |
O2 | y | 3 | 1 | 0.0341(3) |
O2 | z | 3 | 1 | 0.0036(3) |
O2 | x | 3 | 2 | -0.0094(3) |
O2 | y | 3 | 2 | -0.0059(3) |
O2 | z | 3 | 2 | 0.0151(3) |
O2 | x | 3 | 3 | 0.0111(3) |
O2 | y | 3 | 3 | -0.0058(4) |
O2 | z | 3 | 3 | -0.0079(4) |
O2 | x | 3 | 4 | 0.0051(3) |
O2 | y | 3 | 4 | 0.0085(4) |
O2 | z | 3 | 4 | -0.0021(4) |
O2 | x | 3 | 5 | -0.0117(4) |
O2 | y | 3 | 5 | 0.0059(5) |
O2 | z | 3 | 5 | 0.0039(5) |
O2 | x | 3 | 6 | 0 |
O2 | y | 3 | 6 | 0 |
O2 | z | 3 | 6 | 0 |
O3 | x | 4 | 1 | -0.0001(3) |
O3 | y | 4 | 1 | 0.0353(3) |
O3 | z | 4 | 1 | 0.0014(3) |
O3 | x | 4 | 2 | 0.0059(3) |
O3 | y | 4 | 2 | 0.0009(3) |
O3 | z | 4 | 2 | 0.0178(3) |
O3 | x | 4 | 3 | -0.0118(3) |
O3 | y | 4 | 3 | -0.0054(4) |
O3 | z | 4 | 3 | -0.0062(4) |
O3 | x | 4 | 4 | -0.0026(3) |
O3 | y | 4 | 4 | 0.0060(4) |
O3 | z | 4 | 4 | -0.0018(4) |
O3 | x | 4 | 5 | 0.0125(4) |
O3 | y | 4 | 5 | 0.0056(5) |
O3 | z | 4 | 5 | 0.0024(5) |
O3 | x | 4 | 6 | 0 |
O3 | y | 4 | 6 | 0 |
O3 | z | 4 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00023(5) |
La1 | U22 | 1 | 1 | 0.00095(6) |
La1 | U33 | 1 | 1 | 0.00061(6) |
La1 | U12 | 1 | 1 | -0.00018(6) |
La1 | U13 | 1 | 1 | 0.00009(5) |
La1 | U23 | 1 | 1 | -0.00031(5) |
La1 | U11 | 1 | 2 | 0.00085(6) |
La1 | U22 | 1 | 2 | -0.00042(7) |
La1 | U33 | 1 | 2 | -0.00025(6) |
La1 | U12 | 1 | 2 | -0.00063(11) |
La1 | U13 | 1 | 2 | 0.00006(11) |
La1 | U23 | 1 | 2 | 0.00048(5) |
Structural Formula Sum: Fe0.615 La3.333 O11.333 Ti2.718 [ Help ]
Formula weight: 808.8 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+1/2,x2,x3,x4+1/2 |
6 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
7 | -x1+1/2,-x2,-x3,-x4 |
8 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
9 | x1+3/4,x2+1/2,x3,x4+1/4 |
10 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
11 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
12 | x1+3/4,x2,-x3+1/2,x4+1/4 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8370(16) Å [ Help ]
b: 5.2237(13) Å [ Help ]
c: 5.5459(12) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.001(17) ° [ Help ]
Volume: 227.04(9) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.083333 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 293 K [ Help ]
μ: 18.602 mm-1 [ Help ]
Total nb. of reflections: 5368 [ Help ]
Nb. of observed reflections: 5074 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0299 [ Help ]
wR(obs): 0.0448 [ Help ]
R(all): 0.0329 [ Help ]
wR(all): 0.0452 [ Help ]
S(all): 2.77 [ Help ]
S(obs): 2.84 [ Help ]
Nb. of reflections: 5368 [ Help ]
Nb. of parameters: 147 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0025 [ Help ]
Δ/σ(mean): 0.0002 [ Help ]
Δρ(max): 3.58 e_Å-3 [ Help ]
Δρ(min): -2.79 e_Å-3 [ Help ]
Extinction method: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) [ Help ]
Extinction coefficient: 1710(70) [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00038(2) | -0.01595(4) | 0.00261(3) | Uani | 0.00412(6) | 16 | 0.125 | d | ? | ? | ? |
La2 | La | -0.00100(6) | 0.29325(5) | -0.08934(5) | Uani | 0.00459(6) | 16 | 0.0417 | d | ? | ? | ? |
La3 | La | -0.00312(6) | -0.22936(7) | 0.04879(5) | Uani | 0.00939(7) | 16 | 0.0417 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00251(14) | 8 | 0.02(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00251(14) | 8 | 0.02(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00251(14) | 16 | 0.035(18) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00251(14) | 16 | 0.007(18) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00251(14) | 16 | 0.041(16) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00251(14) | 16 | 0.000(16) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00228(13) | 8 | 0.02(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00228(13) | 8 | 0.02(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00228(13) | 16 | 0.036(18) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00228(13) | 16 | 0.006(18) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00228(13) | 16 | 0.040(16) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00228(13) | 16 | 0.002(16) | d | ? | ? | ? |
O1 | O | -0.0001(2) | 0.0035(3) | 0.5528(4) | Uani | 0.0064(4) | 16 | 0.2083 | d | ? | ? | ? |
O2 | O | 0.2268(2) | 0.2149(3) | 0.2078(3) | Uani | 0.0051(4) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7737(3) | 0.2062(3) | 0.2027(3) | Uani | 0.0061(4) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00285(10) | 0.00511(10) | 0.00440(10) | 0.00036(11) | -0.00001(9) | -0.00159(4) |
La2 | La | 0.00196(10) | 0.00813(13) | 0.00370(10) | -0.00113(13) | 0.00046(13) | -0.00247(8) |
La3 | La | 0.00150(11) | 0.01790(16) | 0.00877(11) | 0.00115(15) | -0.00065(15) | -0.00642(11) |
Ti11 | Ti | 0.0031(2) | 0.0023(3) | 0.0022(2) | -0.0005(4) | -0.0001(3) | -0.00037(15) |
Fe11 | Fe | 0.0031(2) | 0.0023(3) | 0.0022(2) | -0.0005(4) | -0.0001(3) | -0.00037(15) |
Ti12 | Ti | 0.0031(2) | 0.0023(3) | 0.0022(2) | -0.0005(4) | -0.0001(3) | -0.00037(15) |
Fe12 | Fe | 0.0031(2) | 0.0023(3) | 0.0022(2) | -0.0005(4) | -0.0001(3) | -0.00037(15) |
Ti13 | Ti | 0.0031(2) | 0.0023(3) | 0.0022(2) | -0.0005(4) | -0.0001(3) | -0.00037(15) |
Fe13 | Fe | 0.0031(2) | 0.0023(3) | 0.0022(2) | -0.0005(4) | -0.0001(3) | -0.00037(15) |
Ti21 | Ti | 0.0028(2) | 0.0023(3) | 0.0017(2) | -0.0001(4) | 0.0004(3) | 0.00008(15) |
Fe21 | Fe | 0.0028(2) | 0.0023(3) | 0.0017(2) | -0.0001(4) | 0.0004(3) | 0.00008(15) |
Ti22 | Ti | 0.0028(2) | 0.0023(3) | 0.0017(2) | -0.0001(4) | 0.0004(3) | 0.00008(15) |
Fe22 | Fe | 0.0028(2) | 0.0023(3) | 0.0017(2) | -0.0001(4) | 0.0004(3) | 0.00008(15) |
Ti23 | Ti | 0.0028(2) | 0.0023(3) | 0.0017(2) | -0.0001(4) | 0.0004(3) | 0.00008(15) |
Fe23 | Fe | 0.0028(2) | 0.0023(3) | 0.0017(2) | -0.0001(4) | 0.0004(3) | 0.00008(15) |
O1 | O | 0.0035(7) | 0.0071(8) | 0.0086(7) | -0.0006(7) | 0.0001(5) | -0.0011(6) |
O2 | O | 0.0052(8) | 0.0049(7) | 0.0054(6) | 0.0004(6) | -0.0003(5) | 0.0008(5) |
O3 | O | 0.0086(8) | 0.0054(7) | 0.0043(6) | -0.0001(6) | 0.0005(5) | 0.0034(5) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.125000 | 0.950000 |
2 | 0.000000 | 0.208333 | 0.950000 |
3 | 0.000000 | 0.250000 | 0.950000 |
4 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.125 |
La2 | 0.107728(4) | 0.0417 |
La3 | -0.102405(5) | 0.0417 |
Ti11 | 0 | 0.0417 |
Fe11 | 0 | 0.0417 |
Ti12 | 0.0417 | 0.0417 |
Fe12 | 0.0417 | 0.0417 |
Ti13 | 0.0833 | 0.0417 |
Fe13 | 0.0833 | 0.0417 |
Ti21 | 0 | 0.0417 |
Fe21 | 0 | 0.0417 |
Ti22 | 0.0417 | 0.0417 |
Fe22 | 0.0417 | 0.0417 |
Ti23 | 0.0833 | 0.0417 |
Fe23 | 0.0833 | 0.0417 |
O1 | 0 | 0.2083 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0054(4) |
Ti11y1 | 0 | 0.1277(3) |
Ti11z1 | 0 | -0.0796(3) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0007(2) |
Ti11y6 | 0 | 0.02420(17) |
Ti11z6 | 0 | 0.02892(15) |
Fe11x1 | 0 | -0.0054(4) |
Fe11y1 | 0 | 0.1277(3) |
Fe11z1 | 0 | -0.0796(3) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0007(2) |
Fe11y6 | 0 | 0.02420(17) |
Fe11z6 | 0 | 0.02892(15) |
Ti12x1 | 0 | -0.0054(4) |
Ti12y1 | 0 | 0.1277(3) |
Ti12z1 | 0 | -0.0796(3) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0007(2) |
Ti12y6 | 0 | 0.02420(17) |
Ti12z6 | 0 | 0.02892(15) |
Fe12x1 | 0 | -0.0054(4) |
Fe12y1 | 0 | 0.1277(3) |
Fe12z1 | 0 | -0.0796(3) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0007(2) |
Fe12y6 | 0 | 0.02420(17) |
Fe12z6 | 0 | 0.02892(15) |
Ti13x1 | 0 | -0.0054(4) |
Ti13y1 | 0 | 0.1277(3) |
Ti13z1 | 0 | -0.0796(3) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0007(2) |
Ti13y6 | 0 | 0.02420(17) |
Ti13z6 | 0 | 0.02892(15) |
Fe13x1 | 0 | -0.0054(4) |
Fe13y1 | 0 | 0.1277(3) |
Fe13z1 | 0 | -0.0796(3) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0007(2) |
Fe13y6 | 0 | 0.02420(17) |
Fe13z6 | 0 | 0.02892(15) |
Ti21x1 | 0 | 0.0017(4) |
Ti21y1 | 0 | 0.1438(3) |
Ti21z1 | 0 | -0.0870(3) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0030(2) |
Ti21y6 | 0 | 0.02309(18) |
Ti21z6 | 0 | 0.02957(15) |
Fe21x1 | 0 | 0.0017(4) |
Fe21y1 | 0 | 0.1438(3) |
Fe21z1 | 0 | -0.0870(3) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0030(2) |
Fe21y6 | 0 | 0.02309(18) |
Fe21z6 | 0 | 0.02957(15) |
Ti22x1 | 0 | 0.0017(4) |
Ti22y1 | 0 | 0.1438(3) |
Ti22z1 | 0 | -0.0870(3) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0030(2) |
Ti22y6 | 0 | 0.02309(18) |
Ti22z6 | 0 | 0.02957(15) |
Fe22x1 | 0 | 0.0017(4) |
Fe22y1 | 0 | 0.1438(3) |
Fe22z1 | 0 | -0.0870(3) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0030(2) |
Fe22y6 | 0 | 0.02309(18) |
Fe22z6 | 0 | 0.02957(15) |
Ti23x1 | 0 | 0.0017(4) |
Ti23y1 | 0 | 0.1438(3) |
Ti23z1 | 0 | -0.0870(3) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0030(2) |
Ti23y6 | 0 | 0.02309(18) |
Ti23z6 | 0 | 0.02957(15) |
Fe23x1 | 0 | 0.0017(4) |
Fe23y1 | 0 | 0.1438(3) |
Fe23z1 | 0 | -0.0870(3) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0030(2) |
Fe23y6 | 0 | 0.02309(18) |
Fe23z6 | 0 | 0.02957(15) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | -0.00037(6) |
La1 | y | 1 | 1 | 0.03266(3) |
La1 | z | 1 | 1 | 0.00213(3) |
La1 | x | 1 | 2 | 0.00023(3) |
La1 | y | 1 | 2 | 0.00120(4) |
La1 | z | 1 | 2 | -0.00103(4) |
O1 | x | 2 | 1 | 0.0002(3) |
O1 | y | 2 | 1 | 0.0110(4) |
O1 | z | 2 | 1 | -0.0137(3) |
O1 | x | 2 | 2 | -0.0003(3) |
O1 | y | 2 | 2 | 0.0143(4) |
O1 | z | 2 | 2 | 0.0020(4) |
O1 | x | 2 | 3 | -0.0007(4) |
O1 | y | 2 | 3 | 0.0032(4) |
O1 | z | 2 | 3 | 0.0077(4) |
O1 | x | 2 | 4 | 0.0003(4) |
O1 | y | 2 | 4 | -0.0152(5) |
O1 | z | 2 | 4 | 0.0011(5) |
O2 | x | 3 | 1 | -0.0003(2) |
O2 | y | 3 | 1 | 0.0340(3) |
O2 | z | 3 | 1 | 0.0034(3) |
O2 | x | 3 | 2 | -0.0091(3) |
O2 | y | 3 | 2 | -0.0058(3) |
O2 | z | 3 | 2 | 0.0150(3) |
O2 | x | 3 | 3 | 0.0113(3) |
O2 | y | 3 | 3 | -0.0056(4) |
O2 | z | 3 | 3 | -0.0077(4) |
O2 | x | 3 | 4 | 0.0051(3) |
O2 | y | 3 | 4 | 0.0086(4) |
O2 | z | 3 | 4 | -0.0019(3) |
O2 | x | 3 | 5 | -0.0117(4) |
O2 | y | 3 | 5 | 0.0046(5) |
O2 | z | 3 | 5 | 0.0034(5) |
O2 | x | 3 | 6 | 0 |
O2 | y | 3 | 6 | 0 |
O2 | z | 3 | 6 | 0 |
O3 | x | 4 | 1 | -0.0002(3) |
O3 | y | 4 | 1 | 0.0350(3) |
O3 | z | 4 | 1 | 0.0013(3) |
O3 | x | 4 | 2 | 0.0058(3) |
O3 | y | 4 | 2 | 0.0012(3) |
O3 | z | 4 | 2 | 0.0176(3) |
O3 | x | 4 | 3 | -0.0115(3) |
O3 | y | 4 | 3 | -0.0054(4) |
O3 | z | 4 | 3 | -0.0064(4) |
O3 | x | 4 | 4 | -0.0026(3) |
O3 | y | 4 | 4 | 0.0059(4) |
O3 | z | 4 | 4 | -0.0017(3) |
O3 | x | 4 | 5 | 0.0122(4) |
O3 | y | 4 | 5 | 0.0047(5) |
O3 | z | 4 | 5 | 0.0025(5) |
O3 | x | 4 | 6 | 0 |
O3 | y | 4 | 6 | 0 |
O3 | z | 4 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00017(5) |
La1 | U22 | 1 | 1 | 0.00117(7) |
La1 | U33 | 1 | 1 | 0.00071(6) |
La1 | U12 | 1 | 1 | -0.00020(7) |
La1 | U13 | 1 | 1 | 0.00004(5) |
La1 | U23 | 1 | 1 | -0.00039(5) |
La1 | U11 | 1 | 2 | 0.00106(7) |
La1 | U22 | 1 | 2 | -0.00060(7) |
La1 | U33 | 1 | 2 | -0.00033(7) |
La1 | U12 | 1 | 2 | -0.00110(11) |
La1 | U13 | 1 | 2 | 0.00039(12) |
La1 | U23 | 1 | 2 | 0.00041(5) |
Structural Formula Sum: Fe0.615 La3.333 O11.333 Ti2.718 [ Help ]
Formula weight: 808.8 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+1/2,x2,x3,x4+1/2 |
6 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
7 | -x1+1/2,-x2,-x3,-x4 |
8 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
9 | x1+3/4,x2+1/2,x3,x4+1/4 |
10 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
11 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
12 | x1+3/4,x2,-x3+1/2,x4+1/4 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8394(15) Å [ Help ]
b: 5.2244(13) Å [ Help ]
c: 5.54680(11) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 89.997(16) ° [ Help ]
Volume: 227.18(8) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.083333 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 320 K [ Help ]
μ: 18.591 mm-1 [ Help ]
Total nb. of reflections: 6525 [ Help ]
Nb. of observed reflections: 6149 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0339 [ Help ]
wR(obs): 0.0498 [ Help ]
R(all): 0.0370 [ Help ]
wR(all): 0.0500 [ Help ]
S(all): 2.84 [ Help ]
S(obs): 2.91 [ Help ]
Nb. of reflections: 6525 [ Help ]
Nb. of parameters: 147 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0182 [ Help ]
Δ/σ(mean): 0.0004 [ Help ]
Δρ(max): 5.32 e_Å-3 [ Help ]
Δρ(min): -4.41 e_Å-3 [ Help ]
Extinction method: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) [ Help ]
Extinction coefficient: 1390(60) [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00037(2) | -0.01574(4) | 0.00257(3) | Uani | 0.00530(5) | 16 | 0.125 | d | ? | ? | ? |
La2 | La | -0.00112(6) | 0.29308(5) | -0.08915(5) | Uani | 0.00583(6) | 16 | 0.0417 | d | ? | ? | ? |
La3 | La | -0.00288(6) | -0.22976(7) | 0.04918(6) | Uani | 0.01076(7) | 16 | 0.0417 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00346(12) | 8 | 0.02(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00346(12) | 8 | 0.02(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00346(12) | 16 | 0.034(18) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00346(12) | 16 | 0.008(18) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00346(12) | 16 | 0.041(16) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00346(12) | 16 | 0.000(16) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00340(12) | 8 | 0.02(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00340(12) | 8 | 0.02(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00340(12) | 16 | 0.034(18) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00340(12) | 16 | 0.008(18) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00340(12) | 16 | 0.039(16) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00340(12) | 16 | 0.002(16) | d | ? | ? | ? |
O1 | O | -0.0001(2) | 0.0031(3) | 0.5529(3) | Uani | 0.0074(4) | 16 | 0.2083 | d | ? | ? | ? |
O2 | O | 0.2271(2) | 0.2149(3) | 0.2076(3) | Uani | 0.0069(4) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7741(2) | 0.2062(3) | 0.2027(3) | Uani | 0.0067(4) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00383(8) | 0.00669(9) | 0.00538(9) | 0.00022(10) | -0.00023(8) | -0.00169(4) |
La2 | La | 0.00293(9) | 0.00978(13) | 0.00478(10) | -0.00087(12) | 0.00046(13) | -0.00254(8) |
La3 | La | 0.00256(10) | 0.01949(15) | 0.01022(11) | 0.00090(15) | -0.00035(15) | -0.00665(11) |
Ti11 | Ti | 0.0039(2) | 0.0037(2) | 0.0028(2) | -0.0003(4) | -0.0008(2) | -0.00040(14) |
Fe11 | Fe | 0.0039(2) | 0.0037(2) | 0.0028(2) | -0.0003(4) | -0.0008(2) | -0.00040(14) |
Ti12 | Ti | 0.0039(2) | 0.0037(2) | 0.0028(2) | -0.0003(4) | -0.0008(2) | -0.00040(14) |
Fe12 | Fe | 0.0039(2) | 0.0037(2) | 0.0028(2) | -0.0003(4) | -0.0008(2) | -0.00040(14) |
Ti13 | Ti | 0.0039(2) | 0.0037(2) | 0.0028(2) | -0.0003(4) | -0.0008(2) | -0.00040(14) |
Fe13 | Fe | 0.0039(2) | 0.0037(2) | 0.0028(2) | -0.0003(4) | -0.0008(2) | -0.00040(14) |
Ti21 | Ti | 0.0038(2) | 0.0038(2) | 0.0026(2) | 0.0000(4) | -0.0005(2) | 0.00000(14) |
Fe21 | Fe | 0.0038(2) | 0.0038(2) | 0.0026(2) | 0.0000(4) | -0.0005(2) | 0.00000(14) |
Ti22 | Ti | 0.0038(2) | 0.0038(2) | 0.0026(2) | 0.0000(4) | -0.0005(2) | 0.00000(14) |
Fe22 | Fe | 0.0038(2) | 0.0038(2) | 0.0026(2) | 0.0000(4) | -0.0005(2) | 0.00000(14) |
Ti23 | Ti | 0.0038(2) | 0.0038(2) | 0.0026(2) | 0.0000(4) | -0.0005(2) | 0.00000(14) |
Fe23 | Fe | 0.0038(2) | 0.0038(2) | 0.0026(2) | 0.0000(4) | -0.0005(2) | 0.00000(14) |
O1 | O | 0.0038(6) | 0.0082(7) | 0.0100(7) | -0.0012(7) | 0.0003(5) | -0.0005(5) |
O2 | O | 0.0074(7) | 0.0071(7) | 0.0062(6) | -0.0003(5) | -0.0001(5) | 0.0012(5) |
O3 | O | 0.0087(8) | 0.0069(7) | 0.0046(6) | -0.0002(5) | 0.0008(5) | 0.0029(5) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.125000 | 0.950000 |
2 | 0.000000 | 0.208333 | 0.950000 |
3 | 0.000000 | 0.250000 | 0.950000 |
4 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.125 |
La2 | 0.107714(4) | 0.0417 |
La3 | -0.102439(6) | 0.0417 |
Ti11 | 0 | 0.0417 |
Fe11 | 0 | 0.0417 |
Ti12 | 0.0417 | 0.0417 |
Fe12 | 0.0417 | 0.0417 |
Ti13 | 0.0833 | 0.0417 |
Fe13 | 0.0833 | 0.0417 |
Ti21 | 0 | 0.0417 |
Fe21 | 0 | 0.0417 |
Ti22 | 0.0417 | 0.0417 |
Fe22 | 0.0417 | 0.0417 |
Ti23 | 0.0833 | 0.0417 |
Fe23 | 0.0833 | 0.0417 |
O1 | 0 | 0.2083 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0056(4) |
Ti11y1 | 0 | 0.1286(3) |
Ti11z1 | 0 | -0.0799(3) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0009(2) |
Ti11y6 | 0 | 0.02390(17) |
Ti11z6 | 0 | 0.02896(15) |
Fe11x1 | 0 | -0.0056(4) |
Fe11y1 | 0 | 0.1286(3) |
Fe11z1 | 0 | -0.0799(3) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0009(2) |
Fe11y6 | 0 | 0.02390(17) |
Fe11z6 | 0 | 0.02896(15) |
Ti12x1 | 0 | -0.0056(4) |
Ti12y1 | 0 | 0.1286(3) |
Ti12z1 | 0 | -0.0799(3) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0009(2) |
Ti12y6 | 0 | 0.02390(17) |
Ti12z6 | 0 | 0.02896(15) |
Fe12x1 | 0 | -0.0056(4) |
Fe12y1 | 0 | 0.1286(3) |
Fe12z1 | 0 | -0.0799(3) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0009(2) |
Fe12y6 | 0 | 0.02390(17) |
Fe12z6 | 0 | 0.02896(15) |
Ti13x1 | 0 | -0.0056(4) |
Ti13y1 | 0 | 0.1286(3) |
Ti13z1 | 0 | -0.0799(3) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0009(2) |
Ti13y6 | 0 | 0.02390(17) |
Ti13z6 | 0 | 0.02896(15) |
Fe13x1 | 0 | -0.0056(4) |
Fe13y1 | 0 | 0.1286(3) |
Fe13z1 | 0 | -0.0799(3) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0009(2) |
Fe13y6 | 0 | 0.02390(17) |
Fe13z6 | 0 | 0.02896(15) |
Ti21x1 | 0 | 0.0013(4) |
Ti21y1 | 0 | 0.1441(3) |
Ti21z1 | 0 | -0.0872(3) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0028(2) |
Ti21y6 | 0 | 0.02307(18) |
Ti21z6 | 0 | 0.02953(15) |
Fe21x1 | 0 | 0.0013(4) |
Fe21y1 | 0 | 0.1441(3) |
Fe21z1 | 0 | -0.0872(3) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0028(2) |
Fe21y6 | 0 | 0.02307(18) |
Fe21z6 | 0 | 0.02953(15) |
Ti22x1 | 0 | 0.0013(4) |
Ti22y1 | 0 | 0.1441(3) |
Ti22z1 | 0 | -0.0872(3) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0028(2) |
Ti22y6 | 0 | 0.02307(18) |
Ti22z6 | 0 | 0.02953(15) |
Fe22x1 | 0 | 0.0013(4) |
Fe22y1 | 0 | 0.1441(3) |
Fe22z1 | 0 | -0.0872(3) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0028(2) |
Fe22y6 | 0 | 0.02307(18) |
Fe22z6 | 0 | 0.02953(15) |
Ti23x1 | 0 | 0.0013(4) |
Ti23y1 | 0 | 0.1441(3) |
Ti23z1 | 0 | -0.0872(3) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0028(2) |
Ti23y6 | 0 | 0.02307(18) |
Ti23z6 | 0 | 0.02953(15) |
Fe23x1 | 0 | 0.0013(4) |
Fe23y1 | 0 | 0.1441(3) |
Fe23z1 | 0 | -0.0872(3) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0028(2) |
Fe23y6 | 0 | 0.02307(18) |
Fe23z6 | 0 | 0.02953(15) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | -0.00046(6) |
La1 | y | 1 | 1 | 0.03277(3) |
La1 | z | 1 | 1 | 0.00211(3) |
La1 | x | 1 | 2 | 0.00023(3) |
La1 | y | 1 | 2 | 0.00115(4) |
La1 | z | 1 | 2 | -0.00108(4) |
O1 | x | 2 | 1 | 0.0006(3) |
O1 | y | 2 | 1 | 0.0105(4) |
O1 | z | 2 | 1 | -0.0136(3) |
O1 | x | 2 | 2 | -0.0002(3) |
O1 | y | 2 | 2 | 0.0140(4) |
O1 | z | 2 | 2 | 0.0022(4) |
O1 | x | 2 | 3 | -0.0005(4) |
O1 | y | 2 | 3 | 0.0034(4) |
O1 | z | 2 | 3 | 0.0075(4) |
O1 | x | 2 | 4 | 0.0004(4) |
O1 | y | 2 | 4 | -0.0148(5) |
O1 | z | 2 | 4 | 0.0016(5) |
O2 | x | 3 | 1 | -0.0005(3) |
O2 | y | 3 | 1 | 0.0343(3) |
O2 | z | 3 | 1 | 0.0035(3) |
O2 | x | 3 | 2 | -0.0090(3) |
O2 | y | 3 | 2 | -0.0057(3) |
O2 | z | 3 | 2 | 0.0155(3) |
O2 | x | 3 | 3 | 0.0109(3) |
O2 | y | 3 | 3 | -0.0062(4) |
O2 | z | 3 | 3 | -0.0082(4) |
O2 | x | 3 | 4 | 0.0049(3) |
O2 | y | 3 | 4 | 0.0078(4) |
O2 | z | 3 | 4 | -0.0026(4) |
O2 | x | 3 | 5 | -0.0118(4) |
O2 | y | 3 | 5 | 0.0054(5) |
O2 | z | 3 | 5 | 0.0042(5) |
O2 | x | 3 | 6 | 0 |
O2 | y | 3 | 6 | 0 |
O2 | z | 3 | 6 | 0 |
O3 | x | 4 | 1 | 0.0002(3) |
O3 | y | 4 | 1 | 0.0353(3) |
O3 | z | 4 | 1 | 0.0012(3) |
O3 | x | 4 | 2 | 0.0057(3) |
O3 | y | 4 | 2 | 0.0009(3) |
O3 | z | 4 | 2 | 0.0178(3) |
O3 | x | 4 | 3 | -0.0118(3) |
O3 | y | 4 | 3 | -0.0060(4) |
O3 | z | 4 | 3 | -0.0063(4) |
O3 | x | 4 | 4 | -0.0023(3) |
O3 | y | 4 | 4 | 0.0057(4) |
O3 | z | 4 | 4 | -0.0018(4) |
O3 | x | 4 | 5 | 0.0122(4) |
O3 | y | 4 | 5 | 0.0060(6) |
O3 | z | 4 | 5 | 0.0023(5) |
O3 | x | 4 | 6 | 0 |
O3 | y | 4 | 6 | 0 |
O3 | z | 4 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00025(5) |
La1 | U22 | 1 | 1 | 0.00117(7) |
La1 | U33 | 1 | 1 | 0.00063(6) |
La1 | U12 | 1 | 1 | -0.00025(6) |
La1 | U13 | 1 | 1 | 0.00014(5) |
La1 | U23 | 1 | 1 | -0.00038(5) |
La1 | U11 | 1 | 2 | 0.00110(6) |
La1 | U22 | 1 | 2 | -0.00054(8) |
La1 | U33 | 1 | 2 | -0.00038(6) |
La1 | U12 | 1 | 2 | -0.00108(11) |
La1 | U13 | 1 | 2 | 0.00014(12) |
La1 | U23 | 1 | 2 | 0.00060(5) |
Structural Formula Sum: Fe0.615 La3.333 O11.333 Ti2.718 [ Help ]
Formula weight: 808.8 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+1/2,x2,x3,x4+1/2 |
6 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
7 | -x1+1/2,-x2,-x3,-x4 |
8 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
9 | x1+3/4,x2+1/2,x3,x4+1/4 |
10 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
11 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
12 | x1+3/4,x2,-x3+1/2,x4+1/4 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8422(16) Å [ Help ]
b: 5.2254(14) Å [ Help ]
c: 5.5484(12) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 89.998(17) ° [ Help ]
Volume: 227.37(9) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.083333 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 350 K [ Help ]
μ: 18.575 mm-1 [ Help ]
Total nb. of reflections: 6517 [ Help ]
Nb. of observed reflections: 6166 [ Help ]
Intense reflections threshold: >3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0340 [ Help ]
wR(obs): 0.0500 [ Help ]
R(all): 0.0367 [ Help ]
wR(all): 0.0503 [ Help ]
S(all): 2.83 [ Help ]
S(obs): 2.90 [ Help ]
Nb. of reflections: 6517 [ Help ]
Nb. of parameters: 147 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0094 [ Help ]
Δ/σ(mean): 0.0004 [ Help ]
Δρ(max): 4.28 e_Å-3 [ Help ]
Δρ(min): -3.74 e_Å-3 [ Help ]
Extinction method: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) [ Help ]
Extinction coefficient: 1380(60) [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00036(2) | -0.01550(4) | 0.00253(3) | Uani | 0.00588(5) | 16 | 0.125 | d | ? | ? | ? |
La2 | La | -0.00100(6) | 0.29264(5) | -0.08902(5) | Uani | 0.00652(6) | 16 | 0.0417 | d | ? | ? | ? |
La3 | La | -0.00301(6) | -0.23029(7) | 0.04969(6) | Uani | 0.01164(7) | 16 | 0.0417 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00393(12) | 8 | 0.0221(9) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00393(12) | 8 | 0.0195(9) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00393(12) | 16 | 0.0341(7) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00393(12) | 16 | 0.0076(7) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00393(12) | 16 | 0.0416(7) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00393(12) | 16 | 0.0001(7) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00377(12) | 8 | 0.0224(9) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00377(12) | 8 | 0.0193(9) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00377(12) | 16 | 0.0353(7) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00377(12) | 16 | 0.0064(7) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00377(12) | 16 | 0.0397(7) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00377(12) | 16 | 0.0020(7) | d | ? | ? | ? |
O1 | O | 0.0000(2) | 0.0033(3) | 0.5523(3) | Uani | 0.0080(4) | 16 | 0.2083 | d | ? | ? | ? |
O2 | O | 0.2275(3) | 0.2147(3) | 0.2074(3) | Uani | 0.0075(4) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7737(2) | 0.2065(4) | 0.2027(3) | Uani | 0.0077(4) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00428(8) | 0.00738(9) | 0.00599(8) | 0.00006(10) | -0.00009(8) | -0.00179(4) |
La2 | La | 0.00344(9) | 0.01081(13) | 0.00533(10) | -0.00103(12) | 0.00074(13) | -0.00269(8) |
La3 | La | 0.00284(10) | 0.02084(16) | 0.01122(11) | 0.00112(15) | -0.00040(14) | -0.00704(11) |
Ti11 | Ti | 0.0043(2) | 0.0042(2) | 0.0033(2) | 0.0006(4) | -0.0010(2) | -0.00035(14) |
Fe11 | Fe | 0.0043(2) | 0.0042(2) | 0.0033(2) | 0.0006(4) | -0.0010(2) | -0.00035(14) |
Ti12 | Ti | 0.0043(2) | 0.0042(2) | 0.0033(2) | 0.0006(4) | -0.0010(2) | -0.00035(14) |
Fe12 | Fe | 0.0043(2) | 0.0042(2) | 0.0033(2) | 0.0006(4) | -0.0010(2) | -0.00035(14) |
Ti13 | Ti | 0.0043(2) | 0.0042(2) | 0.0033(2) | 0.0006(4) | -0.0010(2) | -0.00035(14) |
Fe13 | Fe | 0.0043(2) | 0.0042(2) | 0.0033(2) | 0.0006(4) | -0.0010(2) | -0.00035(14) |
Ti21 | Ti | 0.0042(2) | 0.0041(2) | 0.0031(2) | 0.0007(4) | -0.0006(2) | 0.00007(14) |
Fe21 | Fe | 0.0042(2) | 0.0041(2) | 0.0031(2) | 0.0007(4) | -0.0006(2) | 0.00007(14) |
Ti22 | Ti | 0.0042(2) | 0.0041(2) | 0.0031(2) | 0.0007(4) | -0.0006(2) | 0.00007(14) |
Fe22 | Fe | 0.0042(2) | 0.0041(2) | 0.0031(2) | 0.0007(4) | -0.0006(2) | 0.00007(14) |
Ti23 | Ti | 0.0042(2) | 0.0041(2) | 0.0031(2) | 0.0007(4) | -0.0006(2) | 0.00007(14) |
Fe23 | Fe | 0.0042(2) | 0.0041(2) | 0.0031(2) | 0.0007(4) | -0.0006(2) | 0.00007(14) |
O1 | O | 0.0033(6) | 0.0095(8) | 0.0111(7) | -0.0011(7) | 0.0005(5) | -0.0007(5) |
O2 | O | 0.0081(8) | 0.0078(7) | 0.0067(6) | 0.0001(6) | 0.0004(5) | 0.0015(5) |
O3 | O | 0.0092(8) | 0.0078(7) | 0.0062(6) | 0.0002(5) | 0.0012(5) | 0.0032(5) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.125000 | 0.950000 |
2 | 0.000000 | 0.208333 | 0.950000 |
3 | 0.000000 | 0.250000 | 0.950000 |
4 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.125 |
La2 | 0.107677(5) | 0.0417 |
La3 | -0.102483(6) | 0.0417 |
Ti11 | 0 | 0.0417 |
Fe11 | 0 | 0.0417 |
Ti12 | 0.0417 | 0.0417 |
Fe12 | 0.0417 | 0.0417 |
Ti13 | 0.0833 | 0.0417 |
Fe13 | 0.0833 | 0.0417 |
Ti21 | 0 | 0.0417 |
Fe21 | 0 | 0.0417 |
Ti22 | 0.0417 | 0.0417 |
Fe22 | 0.0417 | 0.0417 |
Ti23 | 0.0833 | 0.0417 |
Fe23 | 0.0833 | 0.0417 |
O1 | 0 | 0.2083 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0056(4) |
Ti11y1 | 0 | 0.1286(3) |
Ti11z1 | 0 | -0.0800(3) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0014(2) |
Ti11y6 | 0 | 0.02399(17) |
Ti11z6 | 0 | 0.02888(15) |
Fe11x1 | 0 | -0.0056(4) |
Fe11y1 | 0 | 0.1286(3) |
Fe11z1 | 0 | -0.0800(3) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0014(2) |
Fe11y6 | 0 | 0.02399(17) |
Fe11z6 | 0 | 0.02888(15) |
Ti12x1 | 0 | -0.0056(4) |
Ti12y1 | 0 | 0.1286(3) |
Ti12z1 | 0 | -0.0800(3) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0014(2) |
Ti12y6 | 0 | 0.02399(17) |
Ti12z6 | 0 | 0.02888(15) |
Fe12x1 | 0 | -0.0056(4) |
Fe12y1 | 0 | 0.1286(3) |
Fe12z1 | 0 | -0.0800(3) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0014(2) |
Fe12y6 | 0 | 0.02399(17) |
Fe12z6 | 0 | 0.02888(15) |
Ti13x1 | 0 | -0.0056(4) |
Ti13y1 | 0 | 0.1286(3) |
Ti13z1 | 0 | -0.0800(3) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0014(2) |
Ti13y6 | 0 | 0.02399(17) |
Ti13z6 | 0 | 0.02888(15) |
Fe13x1 | 0 | -0.0056(4) |
Fe13y1 | 0 | 0.1286(3) |
Fe13z1 | 0 | -0.0800(3) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0014(2) |
Fe13y6 | 0 | 0.02399(17) |
Fe13z6 | 0 | 0.02888(15) |
Ti21x1 | 0 | 0.0013(4) |
Ti21y1 | 0 | 0.1447(3) |
Ti21z1 | 0 | -0.0872(3) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0023(2) |
Ti21y6 | 0 | 0.02296(17) |
Ti21z6 | 0 | 0.02939(14) |
Fe21x1 | 0 | 0.0013(4) |
Fe21y1 | 0 | 0.1447(3) |
Fe21z1 | 0 | -0.0872(3) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0023(2) |
Fe21y6 | 0 | 0.02296(17) |
Fe21z6 | 0 | 0.02939(14) |
Ti22x1 | 0 | 0.0013(4) |
Ti22y1 | 0 | 0.1447(3) |
Ti22z1 | 0 | -0.0872(3) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0023(2) |
Ti22y6 | 0 | 0.02296(17) |
Ti22z6 | 0 | 0.02939(14) |
Fe22x1 | 0 | 0.0013(4) |
Fe22y1 | 0 | 0.1447(3) |
Fe22z1 | 0 | -0.0872(3) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0023(2) |
Fe22y6 | 0 | 0.02296(17) |
Fe22z6 | 0 | 0.02939(14) |
Ti23x1 | 0 | 0.0013(4) |
Ti23y1 | 0 | 0.1447(3) |
Ti23z1 | 0 | -0.0872(3) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0023(2) |
Ti23y6 | 0 | 0.02296(17) |
Ti23z6 | 0 | 0.02939(14) |
Fe23x1 | 0 | 0.0013(4) |
Fe23y1 | 0 | 0.1447(3) |
Fe23z1 | 0 | -0.0872(3) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0023(2) |
Fe23y6 | 0 | 0.02296(17) |
Fe23z6 | 0 | 0.02939(14) |
Displacive (translational) Legendre coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Polynomial order | Polynomial coeff. |
---|---|---|---|
? | ? | ? | ? |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | -0.00075(5) |
La1 | y | 1 | 1 | 0.03292(3) |
La1 | z | 1 | 1 | 0.00208(3) |
La1 | x | 1 | 2 | 0.00025(3) |
La1 | y | 1 | 2 | 0.00111(4) |
La1 | z | 1 | 2 | -0.00113(4) |
O1 | x | 2 | 1 | 0.0003(3) |
O1 | y | 2 | 1 | 0.0107(4) |
O1 | z | 2 | 1 | -0.0137(3) |
O1 | x | 2 | 2 | -0.0002(3) |
O1 | y | 2 | 2 | 0.0140(4) |
O1 | z | 2 | 2 | 0.0024(4) |
O1 | x | 2 | 3 | -0.0011(4) |
O1 | y | 2 | 3 | 0.0036(5) |
O1 | z | 2 | 3 | 0.0074(4) |
O1 | x | 2 | 4 | 0.0004(4) |
O1 | y | 2 | 4 | -0.0155(5) |
O1 | z | 2 | 4 | 0.0013(5) |
O2 | x | 3 | 1 | -0.0006(3) |
O2 | y | 3 | 1 | 0.0343(3) |
O2 | z | 3 | 1 | 0.0035(3) |
O2 | x | 3 | 2 | -0.0092(3) |
O2 | y | 3 | 2 | -0.0059(3) |
O2 | z | 3 | 2 | 0.0154(3) |
O2 | x | 3 | 3 | 0.0112(3) |
O2 | y | 3 | 3 | -0.0057(4) |
O2 | z | 3 | 3 | -0.0083(4) |
O2 | x | 3 | 4 | 0.0048(3) |
O2 | y | 3 | 4 | 0.0081(4) |
O2 | z | 3 | 4 | -0.0027(4) |
O2 | x | 3 | 5 | -0.0118(4) |
O2 | y | 3 | 5 | 0.0048(6) |
O2 | z | 3 | 5 | 0.0044(5) |
O2 | x | 3 | 6 | 0 |
O2 | y | 3 | 6 | 0 |
O2 | z | 3 | 6 | 0 |
O3 | x | 4 | 1 | 0.0000(3) |
O3 | y | 4 | 1 | 0.0356(3) |
O3 | z | 4 | 1 | 0.0012(3) |
O3 | x | 4 | 2 | 0.0059(3) |
O3 | y | 4 | 2 | 0.0006(3) |
O3 | z | 4 | 2 | 0.0174(3) |
O3 | x | 4 | 3 | -0.0114(3) |
O3 | y | 4 | 3 | -0.0061(4) |
O3 | z | 4 | 3 | -0.0063(4) |
O3 | x | 4 | 4 | -0.0027(3) |
O3 | y | 4 | 4 | 0.0058(4) |
O3 | z | 4 | 4 | -0.0021(4) |
O3 | x | 4 | 5 | 0.0125(4) |
O3 | y | 4 | 5 | 0.0060(6) |
O3 | z | 4 | 5 | 0.0020(5) |
O3 | x | 4 | 6 | 0 |
O3 | y | 4 | 6 | 0 |
O3 | z | 4 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00027(5) |
La1 | U22 | 1 | 1 | 0.00124(7) |
La1 | U33 | 1 | 1 | 0.00074(6) |
La1 | U12 | 1 | 1 | -0.00046(6) |
La1 | U13 | 1 | 1 | 0.00015(5) |
La1 | U23 | 1 | 1 | -0.00042(5) |
La1 | U11 | 1 | 2 | 0.00111(6) |
La1 | U22 | 1 | 2 | -0.00062(8) |
La1 | U33 | 1 | 2 | -0.00035(6) |
La1 | U12 | 1 | 2 | -0.00110(11) |
La1 | U13 | 1 | 2 | 0.00022(12) |
La1 | U23 | 1 | 2 | 0.00059(5) |
Structural Formula Sum: Fe0.571 La3.429 O11.429 Ti2.858 [ Help ]
Formula weight: 827.9 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+3/4,x2+1/2,x3,x4+1/4 |
6 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
7 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
8 | x1+3/4,x2,-x3+1/2,x4+1/4 |
9 | x1+1/2,x2,x3,x4+1/2 |
10 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
11 | -x1+1/2,-x2,-x3,-x4 |
12 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.821(2) Å [ Help ]
b: 5.2697(18) Å [ Help ]
c: 5.5468(18) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.02(2) ° [ Help ]
Volume: 228.62(11) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.071429 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 90 K [ Help ]
μ: 18.958 mm-1 [ Help ]
Total nb. of reflections: 12253 [ Help ]
Nb. of observed reflections: 11223 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0677 [ Help ]
wR(obs): 0.0892 [ Help ]
R(all): 0.0734 [ Help ]
wR(all): 0.0900 [ Help ]
S(all): 3.09 [ Help ]
S(obs): 3.19 [ Help ]
Nb. of reflections: 12253 [ Help ]
Nb. of parameters: 161 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0045 [ Help ]
Δ/σ(mean): 0.0005 [ Help ]
Δρ(max): 19.06 e_Å-3 [ Help ]
Δρ(min): -4.36 e_Å-3 [ Help ]
Extinction method: none [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00032(3) | -0.01897(4) | 0.00295(4) | Uani | 0.00618(7) | 16 | 0.1429 | d | ? | ? | ? |
La2 | La | -0.00158(10) | 0.29833(9) | -0.08989(14) | Uani | 0.00668(10) | 16 | 0.0357 | d | ? | ? | ? |
La3 | La | -0.00290(10) | -0.22920(10) | 0.04512(15) | Uani | 0.01004(12) | 16 | 0.0357 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0054(2) | 8 | 0.021(3) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0054(2) | 8 | 0.050(3) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0054(2) | 16 | 0.0253(11) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0054(2) | 16 | 0.0104(11) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0054(2) | 16 | 0.0330(11) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0054(2) | 16 | 0.0027(11) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 8 | 0.020(3) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 8 | 0.051(3) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0256(11) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0101(11) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0311(11) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0046(11) | d | ? | ? | ? |
O1 | O | -0.0006(3) | 0.0074(5) | 0.5582(6) | Uani | 0.0085(6) | 16 | 0.2143 | d | ? | ? | ? |
O2 | O | 0.2240(4) | 0.2139(5) | 0.2088(5) | Uani | 0.0083(6) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7771(3) | 0.2077(5) | 0.2055(5) | Uani | 0.0084(6) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00389(13) | 0.01008(9) | 0.00457(13) | 0.00019(10) | 0.00030(12) | -0.00099(6) |
La2 | La | 0.00321(17) | 0.01259(15) | 0.00424(19) | -0.0005(2) | -0.00079(18) | -0.00153(13) |
La3 | La | 0.00351(18) | 0.01780(18) | 0.0088(2) | -0.0001(2) | -0.0004(2) | -0.00430(15) |
Ti11 | Ti | 0.0054(4) | 0.0089(3) | 0.0019(4) | -0.0023(6) | -0.0029(5) | -0.0001(2) |
Fe11 | Fe | 0.0054(4) | 0.0089(3) | 0.0019(4) | -0.0023(6) | -0.0029(5) | -0.0001(2) |
Ti12 | Ti | 0.0054(4) | 0.0089(3) | 0.0019(4) | -0.0023(6) | -0.0029(5) | -0.0001(2) |
Fe12 | Fe | 0.0054(4) | 0.0089(3) | 0.0019(4) | -0.0023(6) | -0.0029(5) | -0.0001(2) |
Ti13 | Ti | 0.0054(4) | 0.0089(3) | 0.0019(4) | -0.0023(6) | -0.0029(5) | -0.0001(2) |
Fe13 | Fe | 0.0054(4) | 0.0089(3) | 0.0019(4) | -0.0023(6) | -0.0029(5) | -0.0001(2) |
Ti21 | Ti | 0.0054(4) | 0.0077(2) | 0.0021(4) | -0.0022(5) | -0.0025(5) | 0.0006(2) |
Fe21 | Fe | 0.0054(4) | 0.0077(2) | 0.0021(4) | -0.0022(5) | -0.0025(5) | 0.0006(2) |
Ti22 | Ti | 0.0054(4) | 0.0077(2) | 0.0021(4) | -0.0022(5) | -0.0025(5) | 0.0006(2) |
Fe22 | Fe | 0.0054(4) | 0.0077(2) | 0.0021(4) | -0.0022(5) | -0.0025(5) | 0.0006(2) |
Ti23 | Ti | 0.0054(4) | 0.0077(2) | 0.0021(4) | -0.0022(5) | -0.0025(5) | 0.0006(2) |
Fe23 | Fe | 0.0054(4) | 0.0077(2) | 0.0021(4) | -0.0022(5) | -0.0025(5) | 0.0006(2) |
O1 | O | 0.0009(10) | 0.0155(9) | 0.0091(12) | 0.0016(9) | -0.0008(7) | 0.0005(7) |
O2 | O | 0.0065(13) | 0.0137(9) | 0.0046(10) | -0.0007(8) | -0.0001(8) | 0.0009(7) |
O3 | O | 0.0062(12) | 0.0136(8) | 0.0055(10) | -0.0004(8) | 0.0017(8) | 0.0007(7) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | 10 |
11 | 11 |
12 | 12 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.142857 | 0.950000 |
2 | 0.110601 | 0.035714 | 0.950000 |
3 | -0.105665 | 0.035714 | 0.950000 |
4 | 0.000000 | 0.214286 | 0.950000 |
5 | 0.000000 | 0.250000 | 0.950000 |
6 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.1429 |
La2 | 0.110601(6) | 0.0357 |
La3 | -0.105665(7) | 0.0357 |
Ti11 | 0 | 0.0714 |
Fe11 | 0 | 0.0714 |
Ti12 | 0.0536 | 0.0357 |
Fe12 | 0.0536 | 0.0357 |
Ti13 | 0.0893 | 0.0357 |
Fe13 | 0.0893 | 0.0357 |
Ti21 | 0 | 0.0714 |
Fe21 | 0 | 0.0714 |
Ti22 | 0.0536 | 0.0357 |
Fe22 | 0.0536 | 0.0357 |
Ti23 | 0.0893 | 0.0357 |
Fe23 | 0.0893 | 0.0357 |
O1 | 0 | 0.2143 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Ti11x7 | Ti11 | x | 7 |
Ti11y7 | Ti11 | y | 7 |
Ti11z7 | Ti11 | z | 7 |
Ti11x8 | Ti11 | x | 8 |
Ti11y8 | Ti11 | y | 8 |
Ti11z8 | Ti11 | z | 8 |
Ti11x9 | Ti11 | x | 9 |
Ti11y9 | Ti11 | y | 9 |
Ti11z9 | Ti11 | z | 9 |
Ti11x10 | Ti11 | x | 10 |
Ti11y10 | Ti11 | y | 10 |
Ti11z10 | Ti11 | z | 10 |
Ti11x11 | Ti11 | x | 11 |
Ti11y11 | Ti11 | y | 11 |
Ti11z11 | Ti11 | z | 11 |
Ti11x12 | Ti11 | x | 12 |
Ti11y12 | Ti11 | y | 12 |
Ti11z12 | Ti11 | z | 12 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Fe11x7 | Fe11 | x | 7 |
Fe11y7 | Fe11 | y | 7 |
Fe11z7 | Fe11 | z | 7 |
Fe11x8 | Fe11 | x | 8 |
Fe11y8 | Fe11 | y | 8 |
Fe11z8 | Fe11 | z | 8 |
Fe11x9 | Fe11 | x | 9 |
Fe11y9 | Fe11 | y | 9 |
Fe11z9 | Fe11 | z | 9 |
Fe11x10 | Fe11 | x | 10 |
Fe11y10 | Fe11 | y | 10 |
Fe11z10 | Fe11 | z | 10 |
Fe11x11 | Fe11 | x | 11 |
Fe11y11 | Fe11 | y | 11 |
Fe11z11 | Fe11 | z | 11 |
Fe11x12 | Fe11 | x | 12 |
Fe11y12 | Fe11 | y | 12 |
Fe11z12 | Fe11 | z | 12 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Ti12x7 | Ti12 | x | 7 |
Ti12y7 | Ti12 | y | 7 |
Ti12z7 | Ti12 | z | 7 |
Ti12x8 | Ti12 | x | 8 |
Ti12y8 | Ti12 | y | 8 |
Ti12z8 | Ti12 | z | 8 |
Ti12x9 | Ti12 | x | 9 |
Ti12y9 | Ti12 | y | 9 |
Ti12z9 | Ti12 | z | 9 |
Ti12x10 | Ti12 | x | 10 |
Ti12y10 | Ti12 | y | 10 |
Ti12z10 | Ti12 | z | 10 |
Ti12x11 | Ti12 | x | 11 |
Ti12y11 | Ti12 | y | 11 |
Ti12z11 | Ti12 | z | 11 |
Ti12x12 | Ti12 | x | 12 |
Ti12y12 | Ti12 | y | 12 |
Ti12z12 | Ti12 | z | 12 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Fe12x7 | Fe12 | x | 7 |
Fe12y7 | Fe12 | y | 7 |
Fe12z7 | Fe12 | z | 7 |
Fe12x8 | Fe12 | x | 8 |
Fe12y8 | Fe12 | y | 8 |
Fe12z8 | Fe12 | z | 8 |
Fe12x9 | Fe12 | x | 9 |
Fe12y9 | Fe12 | y | 9 |
Fe12z9 | Fe12 | z | 9 |
Fe12x10 | Fe12 | x | 10 |
Fe12y10 | Fe12 | y | 10 |
Fe12z10 | Fe12 | z | 10 |
Fe12x11 | Fe12 | x | 11 |
Fe12y11 | Fe12 | y | 11 |
Fe12z11 | Fe12 | z | 11 |
Fe12x12 | Fe12 | x | 12 |
Fe12y12 | Fe12 | y | 12 |
Fe12z12 | Fe12 | z | 12 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti13x7 | Ti13 | x | 7 |
Ti13y7 | Ti13 | y | 7 |
Ti13z7 | Ti13 | z | 7 |
Ti13x8 | Ti13 | x | 8 |
Ti13y8 | Ti13 | y | 8 |
Ti13z8 | Ti13 | z | 8 |
Ti13x9 | Ti13 | x | 9 |
Ti13y9 | Ti13 | y | 9 |
Ti13z9 | Ti13 | z | 9 |
Ti13x10 | Ti13 | x | 10 |
Ti13y10 | Ti13 | y | 10 |
Ti13z10 | Ti13 | z | 10 |
Ti13x11 | Ti13 | x | 11 |
Ti13y11 | Ti13 | y | 11 |
Ti13z11 | Ti13 | z | 11 |
Ti13x12 | Ti13 | x | 12 |
Ti13y12 | Ti13 | y | 12 |
Ti13z12 | Ti13 | z | 12 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Fe13x7 | Fe13 | x | 7 |
Fe13y7 | Fe13 | y | 7 |
Fe13z7 | Fe13 | z | 7 |
Fe13x8 | Fe13 | x | 8 |
Fe13y8 | Fe13 | y | 8 |
Fe13z8 | Fe13 | z | 8 |
Fe13x9 | Fe13 | x | 9 |
Fe13y9 | Fe13 | y | 9 |
Fe13z9 | Fe13 | z | 9 |
Fe13x10 | Fe13 | x | 10 |
Fe13y10 | Fe13 | y | 10 |
Fe13z10 | Fe13 | z | 10 |
Fe13x11 | Fe13 | x | 11 |
Fe13y11 | Fe13 | y | 11 |
Fe13z11 | Fe13 | z | 11 |
Fe13x12 | Fe13 | x | 12 |
Fe13y12 | Fe13 | y | 12 |
Fe13z12 | Fe13 | z | 12 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Ti21x7 | Ti21 | x | 7 |
Ti21y7 | Ti21 | y | 7 |
Ti21z7 | Ti21 | z | 7 |
Ti21x8 | Ti21 | x | 8 |
Ti21y8 | Ti21 | y | 8 |
Ti21z8 | Ti21 | z | 8 |
Ti21x9 | Ti21 | x | 9 |
Ti21y9 | Ti21 | y | 9 |
Ti21z9 | Ti21 | z | 9 |
Ti21x10 | Ti21 | x | 10 |
Ti21y10 | Ti21 | y | 10 |
Ti21z10 | Ti21 | z | 10 |
Ti21x11 | Ti21 | x | 11 |
Ti21y11 | Ti21 | y | 11 |
Ti21z11 | Ti21 | z | 11 |
Ti21x12 | Ti21 | x | 12 |
Ti21y12 | Ti21 | y | 12 |
Ti21z12 | Ti21 | z | 12 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Fe21x7 | Fe21 | x | 7 |
Fe21y7 | Fe21 | y | 7 |
Fe21z7 | Fe21 | z | 7 |
Fe21x8 | Fe21 | x | 8 |
Fe21y8 | Fe21 | y | 8 |
Fe21z8 | Fe21 | z | 8 |
Fe21x9 | Fe21 | x | 9 |
Fe21y9 | Fe21 | y | 9 |
Fe21z9 | Fe21 | z | 9 |
Fe21x10 | Fe21 | x | 10 |
Fe21y10 | Fe21 | y | 10 |
Fe21z10 | Fe21 | z | 10 |
Fe21x11 | Fe21 | x | 11 |
Fe21y11 | Fe21 | y | 11 |
Fe21z11 | Fe21 | z | 11 |
Fe21x12 | Fe21 | x | 12 |
Fe21y12 | Fe21 | y | 12 |
Fe21z12 | Fe21 | z | 12 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Ti22x7 | Ti22 | x | 7 |
Ti22y7 | Ti22 | y | 7 |
Ti22z7 | Ti22 | z | 7 |
Ti22x8 | Ti22 | x | 8 |
Ti22y8 | Ti22 | y | 8 |
Ti22z8 | Ti22 | z | 8 |
Ti22x9 | Ti22 | x | 9 |
Ti22y9 | Ti22 | y | 9 |
Ti22z9 | Ti22 | z | 9 |
Ti22x10 | Ti22 | x | 10 |
Ti22y10 | Ti22 | y | 10 |
Ti22z10 | Ti22 | z | 10 |
Ti22x11 | Ti22 | x | 11 |
Ti22y11 | Ti22 | y | 11 |
Ti22z11 | Ti22 | z | 11 |
Ti22x12 | Ti22 | x | 12 |
Ti22y12 | Ti22 | y | 12 |
Ti22z12 | Ti22 | z | 12 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Fe22x7 | Fe22 | x | 7 |
Fe22y7 | Fe22 | y | 7 |
Fe22z7 | Fe22 | z | 7 |
Fe22x8 | Fe22 | x | 8 |
Fe22y8 | Fe22 | y | 8 |
Fe22z8 | Fe22 | z | 8 |
Fe22x9 | Fe22 | x | 9 |
Fe22y9 | Fe22 | y | 9 |
Fe22z9 | Fe22 | z | 9 |
Fe22x10 | Fe22 | x | 10 |
Fe22y10 | Fe22 | y | 10 |
Fe22z10 | Fe22 | z | 10 |
Fe22x11 | Fe22 | x | 11 |
Fe22y11 | Fe22 | y | 11 |
Fe22z11 | Fe22 | z | 11 |
Fe22x12 | Fe22 | x | 12 |
Fe22y12 | Fe22 | y | 12 |
Fe22z12 | Fe22 | z | 12 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Ti23x7 | Ti23 | x | 7 |
Ti23y7 | Ti23 | y | 7 |
Ti23z7 | Ti23 | z | 7 |
Ti23x8 | Ti23 | x | 8 |
Ti23y8 | Ti23 | y | 8 |
Ti23z8 | Ti23 | z | 8 |
Ti23x9 | Ti23 | x | 9 |
Ti23y9 | Ti23 | y | 9 |
Ti23z9 | Ti23 | z | 9 |
Ti23x10 | Ti23 | x | 10 |
Ti23y10 | Ti23 | y | 10 |
Ti23z10 | Ti23 | z | 10 |
Ti23x11 | Ti23 | x | 11 |
Ti23y11 | Ti23 | y | 11 |
Ti23z11 | Ti23 | z | 11 |
Ti23x12 | Ti23 | x | 12 |
Ti23y12 | Ti23 | y | 12 |
Ti23z12 | Ti23 | z | 12 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Fe23x7 | Fe23 | x | 7 |
Fe23y7 | Fe23 | y | 7 |
Fe23z7 | Fe23 | z | 7 |
Fe23x8 | Fe23 | x | 8 |
Fe23y8 | Fe23 | y | 8 |
Fe23z8 | Fe23 | z | 8 |
Fe23x9 | Fe23 | x | 9 |
Fe23y9 | Fe23 | y | 9 |
Fe23z9 | Fe23 | z | 9 |
Fe23x10 | Fe23 | x | 10 |
Fe23y10 | Fe23 | y | 10 |
Fe23z10 | Fe23 | z | 10 |
Fe23x11 | Fe23 | x | 11 |
Fe23y11 | Fe23 | y | 11 |
Fe23z11 | Fe23 | z | 11 |
Fe23x12 | Fe23 | x | 12 |
Fe23y12 | Fe23 | y | 12 |
Fe23z12 | Fe23 | z | 12 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0075(8) |
Ti11y1 | 0 | 0.1422(4) |
Ti11z1 | 0 | -0.0583(5) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0009(4) |
Ti11y6 | 0 | 0.0110(2) |
Ti11z6 | 0 | 0.0217(3) |
Ti11x7 | 0 | 0 |
Ti11y7 | 0 | 0 |
Ti11z7 | 0 | 0 |
Ti11x8 | 0 | 0 |
Ti11y8 | 0 | 0 |
Ti11z8 | 0 | 0 |
Ti11x9 | 0 | 0 |
Ti11y9 | 0 | 0 |
Ti11z9 | 0 | 0 |
Ti11x10 | 0 | 0 |
Ti11y10 | 0 | 0 |
Ti11z10 | 0 | 0 |
Ti11x11 | 0 | 0 |
Ti11y11 | 0 | 0 |
Ti11z11 | 0 | 0 |
Ti11x12 | 0 | 0.0014(3) |
Ti11y12 | 0 | -0.00821(16) |
Ti11z12 | 0 | -0.0128(4) |
Fe11x1 | 0 | -0.0075(8) |
Fe11y1 | 0 | 0.1422(4) |
Fe11z1 | 0 | -0.0583(5) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0009(4) |
Fe11y6 | 0 | 0.0110(2) |
Fe11z6 | 0 | 0.0217(3) |
Fe11x7 | 0 | 0 |
Fe11y7 | 0 | 0 |
Fe11z7 | 0 | 0 |
Fe11x8 | 0 | 0 |
Fe11y8 | 0 | 0 |
Fe11z8 | 0 | 0 |
Fe11x9 | 0 | 0 |
Fe11y9 | 0 | 0 |
Fe11z9 | 0 | 0 |
Fe11x10 | 0 | 0 |
Fe11y10 | 0 | 0 |
Fe11z10 | 0 | 0 |
Fe11x11 | 0 | 0 |
Fe11y11 | 0 | 0 |
Fe11z11 | 0 | 0 |
Fe11x12 | 0 | 0.0014(3) |
Fe11y12 | 0 | -0.00821(16) |
Fe11z12 | 0 | -0.0128(4) |
Ti12x1 | 0 | -0.0075(8) |
Ti12y1 | 0 | 0.1422(4) |
Ti12z1 | 0 | -0.0583(5) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0009(4) |
Ti12y6 | 0 | 0.0110(2) |
Ti12z6 | 0 | 0.0217(3) |
Ti12x7 | 0 | 0 |
Ti12y7 | 0 | 0 |
Ti12z7 | 0 | 0 |
Ti12x8 | 0 | 0 |
Ti12y8 | 0 | 0 |
Ti12z8 | 0 | 0 |
Ti12x9 | 0 | 0 |
Ti12y9 | 0 | 0 |
Ti12z9 | 0 | 0 |
Ti12x10 | 0 | 0 |
Ti12y10 | 0 | 0 |
Ti12z10 | 0 | 0 |
Ti12x11 | 0 | 0 |
Ti12y11 | 0 | 0 |
Ti12z11 | 0 | 0 |
Ti12x12 | 0 | 0.0014(3) |
Ti12y12 | 0 | -0.00821(16) |
Ti12z12 | 0 | -0.0128(4) |
Fe12x1 | 0 | -0.0075(8) |
Fe12y1 | 0 | 0.1422(4) |
Fe12z1 | 0 | -0.0583(5) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0009(4) |
Fe12y6 | 0 | 0.0110(2) |
Fe12z6 | 0 | 0.0217(3) |
Fe12x7 | 0 | 0 |
Fe12y7 | 0 | 0 |
Fe12z7 | 0 | 0 |
Fe12x8 | 0 | 0 |
Fe12y8 | 0 | 0 |
Fe12z8 | 0 | 0 |
Fe12x9 | 0 | 0 |
Fe12y9 | 0 | 0 |
Fe12z9 | 0 | 0 |
Fe12x10 | 0 | 0 |
Fe12y10 | 0 | 0 |
Fe12z10 | 0 | 0 |
Fe12x11 | 0 | 0 |
Fe12y11 | 0 | 0 |
Fe12z11 | 0 | 0 |
Fe12x12 | 0 | 0.0014(3) |
Fe12y12 | 0 | -0.00821(16) |
Fe12z12 | 0 | -0.0128(4) |
Ti13x1 | 0 | -0.0075(8) |
Ti13y1 | 0 | 0.1422(4) |
Ti13z1 | 0 | -0.0583(5) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0009(4) |
Ti13y6 | 0 | 0.0110(2) |
Ti13z6 | 0 | 0.0217(3) |
Ti13x7 | 0 | 0 |
Ti13y7 | 0 | 0 |
Ti13z7 | 0 | 0 |
Ti13x8 | 0 | 0 |
Ti13y8 | 0 | 0 |
Ti13z8 | 0 | 0 |
Ti13x9 | 0 | 0 |
Ti13y9 | 0 | 0 |
Ti13z9 | 0 | 0 |
Ti13x10 | 0 | 0 |
Ti13y10 | 0 | 0 |
Ti13z10 | 0 | 0 |
Ti13x11 | 0 | 0 |
Ti13y11 | 0 | 0 |
Ti13z11 | 0 | 0 |
Ti13x12 | 0 | 0.0014(3) |
Ti13y12 | 0 | -0.00821(16) |
Ti13z12 | 0 | -0.0128(4) |
Fe13x1 | 0 | -0.0075(8) |
Fe13y1 | 0 | 0.1422(4) |
Fe13z1 | 0 | -0.0583(5) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0009(4) |
Fe13y6 | 0 | 0.0110(2) |
Fe13z6 | 0 | 0.0217(3) |
Fe13x7 | 0 | 0 |
Fe13y7 | 0 | 0 |
Fe13z7 | 0 | 0 |
Fe13x8 | 0 | 0 |
Fe13y8 | 0 | 0 |
Fe13z8 | 0 | 0 |
Fe13x9 | 0 | 0 |
Fe13y9 | 0 | 0 |
Fe13z9 | 0 | 0 |
Fe13x10 | 0 | 0 |
Fe13y10 | 0 | 0 |
Fe13z10 | 0 | 0 |
Fe13x11 | 0 | 0 |
Fe13y11 | 0 | 0 |
Fe13z11 | 0 | 0 |
Fe13x12 | 0 | 0.0014(3) |
Fe13y12 | 0 | -0.00821(16) |
Fe13z12 | 0 | -0.0128(4) |
Ti21x1 | 0 | -0.0012(8) |
Ti21y1 | 0 | 0.1553(4) |
Ti21z1 | 0 | -0.0618(5) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0015(4) |
Ti21y6 | 0 | 0.0098(2) |
Ti21z6 | 0 | 0.0220(3) |
Ti21x7 | 0 | 0 |
Ti21y7 | 0 | 0 |
Ti21z7 | 0 | 0 |
Ti21x8 | 0 | 0 |
Ti21y8 | 0 | 0 |
Ti21z8 | 0 | 0 |
Ti21x9 | 0 | 0 |
Ti21y9 | 0 | 0 |
Ti21z9 | 0 | 0 |
Ti21x10 | 0 | 0 |
Ti21y10 | 0 | 0 |
Ti21z10 | 0 | 0 |
Ti21x11 | 0 | 0 |
Ti21y11 | 0 | 0 |
Ti21z11 | 0 | 0 |
Ti21x12 | 0 | 0.0031(3) |
Ti21y12 | 0 | -0.00928(16) |
Ti21z12 | 0 | -0.0127(4) |
Fe21x1 | 0 | -0.0012(8) |
Fe21y1 | 0 | 0.1553(4) |
Fe21z1 | 0 | -0.0618(5) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0015(4) |
Fe21y6 | 0 | 0.0098(2) |
Fe21z6 | 0 | 0.0220(3) |
Fe21x7 | 0 | 0 |
Fe21y7 | 0 | 0 |
Fe21z7 | 0 | 0 |
Fe21x8 | 0 | 0 |
Fe21y8 | 0 | 0 |
Fe21z8 | 0 | 0 |
Fe21x9 | 0 | 0 |
Fe21y9 | 0 | 0 |
Fe21z9 | 0 | 0 |
Fe21x10 | 0 | 0 |
Fe21y10 | 0 | 0 |
Fe21z10 | 0 | 0 |
Fe21x11 | 0 | 0 |
Fe21y11 | 0 | 0 |
Fe21z11 | 0 | 0 |
Fe21x12 | 0 | 0.0031(3) |
Fe21y12 | 0 | -0.00928(16) |
Fe21z12 | 0 | -0.0127(4) |
Ti22x1 | 0 | -0.0012(8) |
Ti22y1 | 0 | 0.1553(4) |
Ti22z1 | 0 | -0.0618(5) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0015(4) |
Ti22y6 | 0 | 0.0098(2) |
Ti22z6 | 0 | 0.0220(3) |
Ti22x7 | 0 | 0 |
Ti22y7 | 0 | 0 |
Ti22z7 | 0 | 0 |
Ti22x8 | 0 | 0 |
Ti22y8 | 0 | 0 |
Ti22z8 | 0 | 0 |
Ti22x9 | 0 | 0 |
Ti22y9 | 0 | 0 |
Ti22z9 | 0 | 0 |
Ti22x10 | 0 | 0 |
Ti22y10 | 0 | 0 |
Ti22z10 | 0 | 0 |
Ti22x11 | 0 | 0 |
Ti22y11 | 0 | 0 |
Ti22z11 | 0 | 0 |
Ti22x12 | 0 | 0.0031(3) |
Ti22y12 | 0 | -0.00928(16) |
Ti22z12 | 0 | -0.0127(4) |
Fe22x1 | 0 | -0.0012(8) |
Fe22y1 | 0 | 0.1553(4) |
Fe22z1 | 0 | -0.0618(5) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0015(4) |
Fe22y6 | 0 | 0.0098(2) |
Fe22z6 | 0 | 0.0220(3) |
Fe22x7 | 0 | 0 |
Fe22y7 | 0 | 0 |
Fe22z7 | 0 | 0 |
Fe22x8 | 0 | 0 |
Fe22y8 | 0 | 0 |
Fe22z8 | 0 | 0 |
Fe22x9 | 0 | 0 |
Fe22y9 | 0 | 0 |
Fe22z9 | 0 | 0 |
Fe22x10 | 0 | 0 |
Fe22y10 | 0 | 0 |
Fe22z10 | 0 | 0 |
Fe22x11 | 0 | 0 |
Fe22y11 | 0 | 0 |
Fe22z11 | 0 | 0 |
Fe22x12 | 0 | 0.0031(3) |
Fe22y12 | 0 | -0.00928(16) |
Fe22z12 | 0 | -0.0127(4) |
Ti23x1 | 0 | -0.0012(8) |
Ti23y1 | 0 | 0.1553(4) |
Ti23z1 | 0 | -0.0618(5) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0015(4) |
Ti23y6 | 0 | 0.0098(2) |
Ti23z6 | 0 | 0.0220(3) |
Ti23x7 | 0 | 0 |
Ti23y7 | 0 | 0 |
Ti23z7 | 0 | 0 |
Ti23x8 | 0 | 0 |
Ti23y8 | 0 | 0 |
Ti23z8 | 0 | 0 |
Ti23x9 | 0 | 0 |
Ti23y9 | 0 | 0 |
Ti23z9 | 0 | 0 |
Ti23x10 | 0 | 0 |
Ti23y10 | 0 | 0 |
Ti23z10 | 0 | 0 |
Ti23x11 | 0 | 0 |
Ti23y11 | 0 | 0 |
Ti23z11 | 0 | 0 |
Ti23x12 | 0 | 0.0031(3) |
Ti23y12 | 0 | -0.00928(16) |
Ti23z12 | 0 | -0.0127(4) |
Fe23x1 | 0 | -0.0012(8) |
Fe23y1 | 0 | 0.1553(4) |
Fe23z1 | 0 | -0.0618(5) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0015(4) |
Fe23y6 | 0 | 0.0098(2) |
Fe23z6 | 0 | 0.0220(3) |
Fe23x7 | 0 | 0 |
Fe23y7 | 0 | 0 |
Fe23z7 | 0 | 0 |
Fe23x8 | 0 | 0 |
Fe23y8 | 0 | 0 |
Fe23z8 | 0 | 0 |
Fe23x9 | 0 | 0 |
Fe23y9 | 0 | 0 |
Fe23z9 | 0 | 0 |
Fe23x10 | 0 | 0 |
Fe23y10 | 0 | 0 |
Fe23z10 | 0 | 0 |
Fe23x11 | 0 | 0 |
Fe23y11 | 0 | 0 |
Fe23z11 | 0 | 0 |
Fe23x12 | 0 | 0.0031(3) |
Fe23y12 | 0 | -0.00928(16) |
Fe23z12 | 0 | -0.0127(4) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | 0.00014(11) |
La1 | y | 1 | 1 | 0.03747(4) |
La1 | z | 1 | 1 | 0.00065(6) |
La1 | x | 1 | 2 | 0.00018(4) |
La1 | y | 1 | 2 | -0.00063(4) |
La1 | z | 1 | 2 | 0.00053(5) |
O1 | x | 4 | 1 | -0.0005(6) |
O1 | y | 4 | 1 | 0.0200(6) |
O1 | z | 4 | 1 | -0.0109(6) |
O1 | x | 4 | 2 | 0.0004(4) |
O1 | y | 4 | 2 | 0.0084(5) |
O1 | z | 4 | 2 | 0.0042(6) |
O1 | x | 4 | 3 | 0.0013(8) |
O1 | y | 4 | 3 | -0.0025(9) |
O1 | z | 4 | 3 | 0.0062(9) |
O1 | x | 4 | 4 | 0.0006(5) |
O1 | y | 4 | 4 | -0.0061(6) |
O1 | z | 4 | 4 | 0.0002(7) |
O1 | x | 4 | 5 | -0.0007(10) |
O1 | y | 4 | 5 | 0.0063(11) |
O1 | z | 4 | 5 | 0.0027(11) |
O1 | x | 4 | 6 | 0 |
O1 | y | 4 | 6 | 0 |
O1 | z | 4 | 6 | 0 |
O2 | x | 5 | 1 | 0.0022(4) |
O2 | y | 5 | 1 | 0.0348(5) |
O2 | z | 5 | 1 | 0.0015(5) |
O2 | x | 5 | 2 | -0.0077(4) |
O2 | y | 5 | 2 | -0.0043(5) |
O2 | z | 5 | 2 | 0.0143(5) |
O2 | x | 5 | 3 | 0.0058(4) |
O2 | y | 5 | 3 | -0.0043(6) |
O2 | z | 5 | 3 | -0.0059(6) |
O2 | x | 5 | 4 | 0.0027(4) |
O2 | y | 5 | 4 | 0.0086(6) |
O2 | z | 5 | 4 | -0.0040(6) |
O2 | x | 5 | 5 | -0.0078(5) |
O2 | y | 5 | 5 | 0.0070(7) |
O2 | z | 5 | 5 | 0.0021(7) |
O2 | x | 5 | 6 | 0 |
O2 | y | 5 | 6 | 0 |
O2 | z | 5 | 6 | 0 |
O3 | x | 6 | 1 | -0.0016(4) |
O3 | y | 6 | 1 | 0.0362(5) |
O3 | z | 6 | 1 | 0.0014(5) |
O3 | x | 6 | 2 | 0.0064(4) |
O3 | y | 6 | 2 | 0.0024(5) |
O3 | z | 6 | 2 | 0.0162(5) |
O3 | x | 6 | 3 | -0.0066(5) |
O3 | y | 6 | 3 | -0.0010(6) |
O3 | z | 6 | 3 | -0.0069(6) |
O3 | x | 6 | 4 | -0.0021(4) |
O3 | y | 6 | 4 | 0.0046(6) |
O3 | z | 6 | 4 | -0.0033(6) |
O3 | x | 6 | 5 | 0.0070(5) |
O3 | y | 6 | 5 | 0.0025(7) |
O3 | z | 6 | 5 | 0.0030(7) |
O3 | x | 6 | 6 | 0 |
O3 | y | 6 | 6 | 0 |
O3 | z | 6 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00023(8) |
La1 | U22 | 1 | 1 | 0.00008(6) |
La1 | U33 | 1 | 1 | 0.00072(10) |
La1 | U12 | 1 | 1 | 0.00015(11) |
La1 | U13 | 1 | 1 | 0.00011(7) |
La1 | U23 | 1 | 1 | 0.00031(10) |
La1 | U11 | 1 | 2 | 0.00029(9) |
La1 | U22 | 1 | 2 | 0.00088(7) |
La1 | U33 | 1 | 2 | -0.00061(10) |
La1 | U12 | 1 | 2 | -0.00014(11) |
La1 | U13 | 1 | 2 | 0.00019(16) |
La1 | U23 | 1 | 2 | 0.00010(8) |
La1 | U11 | 1 | 3 | -0.00020(11) |
La1 | U22 | 1 | 3 | 0.00052(10) |
La1 | U33 | 1 | 3 | -0.00008(13) |
La1 | U12 | 1 | 3 | -0.00016(10) |
La1 | U13 | 1 | 3 | -0.00011(11) |
La1 | U23 | 1 | 3 | -0.00071(17) |
La1 | U11 | 1 | 4 | 0 |
La1 | U22 | 1 | 4 | 0 |
La1 | U33 | 1 | 4 | 0 |
La1 | U12 | 1 | 4 | 0 |
La1 | U13 | 1 | 4 | 0 |
La1 | U23 | 1 | 4 | 0 |
Structural Formula Sum: Fe0.571 La3.429 O11.429 Ti2.858 [ Help ]
Formula weight: 827.9 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+3/4,x2+1/2,x3,x4+1/4 |
6 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
7 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
8 | x1+3/4,x2,-x3+1/2,x4+1/4 |
9 | x1+1/2,x2,x3,x4+1/2 |
10 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
11 | -x1+1/2,-x2,-x3,-x4 |
12 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8248(18) Å [ Help ]
b: 5.2721(14) Å [ Help ]
c: 5.5483(16) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.007(17) ° [ Help ]
Volume: 228.88(10) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.071429 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 140 K [ Help ]
μ: 18.936 mm-1 [ Help ]
Absorption correction type: numerical [ Help ]
Absorption correction remarks: SADABS (version(2008/1) [ Help ]
Minimum transmission factor: 0.3379 [ Help ]
Maximum transmission factor: 0.7477 [ Help ]
Total nb. of reflections: 12312 [ Help ]
Nb. of observed reflections: 11441 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0622 [ Help ]
wR(obs): 0.0833 [ Help ]
R(all): 0.0672 [ Help ]
wR(all): 0.0841 [ Help ]
S(all): 3.22 [ Help ]
S(obs): 3.31 [ Help ]
Nb. of reflections: 12312 [ Help ]
Nb. of parameters: 161 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0019 [ Help ]
Δ/σ(mean): 0.0004 [ Help ]
Δρ(max): 17.47 e_Å-3 [ Help ]
Δρ(min): -4.75 e_Å-3 [ Help ]
Extinction method: none [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00029(3) | -0.01871(4) | 0.00286(4) | Uani | 0.00583(6) | 16 | 0.1429 | d | ? | ? | ? |
La2 | La | -0.00156(9) | 0.29784(8) | -0.09002(14) | Uani | 0.00629(9) | 16 | 0.0357 | d | ? | ? | ? |
La3 | La | -0.00288(9) | -0.23013(10) | 0.04607(14) | Uani | 0.01018(11) | 16 | 0.0357 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0045(2) | 8 | 0.025(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0045(2) | 8 | 0.046(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0045(2) | 16 | 0.0269(11) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0045(2) | 16 | 0.0088(11) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0045(2) | 16 | 0.0335(10) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0045(2) | 16 | 0.0022(10) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00406(19) | 8 | 0.027(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00406(19) | 8 | 0.045(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00406(19) | 16 | 0.0270(11) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00406(19) | 16 | 0.0088(11) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00406(19) | 16 | 0.0330(10) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00406(19) | 16 | 0.0027(10) | d | ? | ? | ? |
O1 | O | -0.0003(3) | 0.0070(4) | 0.5588(5) | Uani | 0.0073(5) | 16 | 0.2143 | d | ? | ? | ? |
O2 | O | 0.2243(3) | 0.2138(5) | 0.2095(4) | Uani | 0.0077(6) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7770(3) | 0.2077(5) | 0.2055(4) | Uani | 0.0077(5) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00293(10) | 0.00964(8) | 0.00491(13) | 0.00026(9) | 0.00003(12) | -0.00109(6) |
La2 | La | 0.00216(13) | 0.01221(15) | 0.00451(19) | -0.00052(18) | -0.00087(17) | -0.00120(13) |
La3 | La | 0.00236(15) | 0.01867(18) | 0.0095(2) | 0.0001(2) | -0.00026(19) | -0.00483(15) |
Ti11 | Ti | 0.0034(3) | 0.0075(3) | 0.0028(4) | -0.0028(5) | -0.0011(5) | 0.0000(2) |
Fe11 | Fe | 0.0034(3) | 0.0075(3) | 0.0028(4) | -0.0028(5) | -0.0011(5) | 0.0000(2) |
Ti12 | Ti | 0.0034(3) | 0.0075(3) | 0.0028(4) | -0.0028(5) | -0.0011(5) | 0.0000(2) |
Fe12 | Fe | 0.0034(3) | 0.0075(3) | 0.0028(4) | -0.0028(5) | -0.0011(5) | 0.0000(2) |
Ti13 | Ti | 0.0034(3) | 0.0075(3) | 0.0028(4) | -0.0028(5) | -0.0011(5) | 0.0000(2) |
Fe13 | Fe | 0.0034(3) | 0.0075(3) | 0.0028(4) | -0.0028(5) | -0.0011(5) | 0.0000(2) |
Ti21 | Ti | 0.0032(3) | 0.0069(3) | 0.0021(4) | -0.0027(4) | -0.0010(5) | 0.0004(2) |
Fe21 | Fe | 0.0032(3) | 0.0069(3) | 0.0021(4) | -0.0027(4) | -0.0010(5) | 0.0004(2) |
Ti22 | Ti | 0.0032(3) | 0.0069(3) | 0.0021(4) | -0.0027(4) | -0.0010(5) | 0.0004(2) |
Fe22 | Fe | 0.0032(3) | 0.0069(3) | 0.0021(4) | -0.0027(4) | -0.0010(5) | 0.0004(2) |
Ti23 | Ti | 0.0032(3) | 0.0069(3) | 0.0021(4) | -0.0027(4) | -0.0010(5) | 0.0004(2) |
Fe23 | Fe | 0.0032(3) | 0.0069(3) | 0.0021(4) | -0.0027(4) | -0.0010(5) | 0.0004(2) |
O1 | O | 0.0002(8) | 0.0145(8) | 0.0073(11) | 0.0008(8) | 0.0000(6) | -0.0003(7) |
O2 | O | 0.0064(11) | 0.0132(9) | 0.0035(9) | -0.0003(7) | -0.0002(7) | 0.0018(7) |
O3 | O | 0.0054(10) | 0.0129(8) | 0.0049(10) | 0.0004(7) | 0.0006(7) | 0.0011(7) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | 10 |
11 | 11 |
12 | 12 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.142857 | 0.950000 |
2 | 0.110566 | 0.035714 | 0.950000 |
3 | -0.105731 | 0.035714 | 0.950000 |
4 | 0.000000 | 0.214286 | 0.950000 |
5 | 0.000000 | 0.250000 | 0.950000 |
6 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.1429 |
La2 | 0.110566(6) | 0.0357 |
La3 | -0.105731(7) | 0.0357 |
Ti11 | 0 | 0.0714 |
Fe11 | 0 | 0.0714 |
Ti12 | 0.0536 | 0.0357 |
Fe12 | 0.0536 | 0.0357 |
Ti13 | 0.0893 | 0.0357 |
Fe13 | 0.0893 | 0.0357 |
Ti21 | 0 | 0.0714 |
Fe21 | 0 | 0.0714 |
Ti22 | 0.0536 | 0.0357 |
Fe22 | 0.0536 | 0.0357 |
Ti23 | 0.0893 | 0.0357 |
Fe23 | 0.0893 | 0.0357 |
O1 | 0 | 0.2143 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Ti11x7 | Ti11 | x | 7 |
Ti11y7 | Ti11 | y | 7 |
Ti11z7 | Ti11 | z | 7 |
Ti11x8 | Ti11 | x | 8 |
Ti11y8 | Ti11 | y | 8 |
Ti11z8 | Ti11 | z | 8 |
Ti11x9 | Ti11 | x | 9 |
Ti11y9 | Ti11 | y | 9 |
Ti11z9 | Ti11 | z | 9 |
Ti11x10 | Ti11 | x | 10 |
Ti11y10 | Ti11 | y | 10 |
Ti11z10 | Ti11 | z | 10 |
Ti11x11 | Ti11 | x | 11 |
Ti11y11 | Ti11 | y | 11 |
Ti11z11 | Ti11 | z | 11 |
Ti11x12 | Ti11 | x | 12 |
Ti11y12 | Ti11 | y | 12 |
Ti11z12 | Ti11 | z | 12 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Fe11x7 | Fe11 | x | 7 |
Fe11y7 | Fe11 | y | 7 |
Fe11z7 | Fe11 | z | 7 |
Fe11x8 | Fe11 | x | 8 |
Fe11y8 | Fe11 | y | 8 |
Fe11z8 | Fe11 | z | 8 |
Fe11x9 | Fe11 | x | 9 |
Fe11y9 | Fe11 | y | 9 |
Fe11z9 | Fe11 | z | 9 |
Fe11x10 | Fe11 | x | 10 |
Fe11y10 | Fe11 | y | 10 |
Fe11z10 | Fe11 | z | 10 |
Fe11x11 | Fe11 | x | 11 |
Fe11y11 | Fe11 | y | 11 |
Fe11z11 | Fe11 | z | 11 |
Fe11x12 | Fe11 | x | 12 |
Fe11y12 | Fe11 | y | 12 |
Fe11z12 | Fe11 | z | 12 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Ti12x7 | Ti12 | x | 7 |
Ti12y7 | Ti12 | y | 7 |
Ti12z7 | Ti12 | z | 7 |
Ti12x8 | Ti12 | x | 8 |
Ti12y8 | Ti12 | y | 8 |
Ti12z8 | Ti12 | z | 8 |
Ti12x9 | Ti12 | x | 9 |
Ti12y9 | Ti12 | y | 9 |
Ti12z9 | Ti12 | z | 9 |
Ti12x10 | Ti12 | x | 10 |
Ti12y10 | Ti12 | y | 10 |
Ti12z10 | Ti12 | z | 10 |
Ti12x11 | Ti12 | x | 11 |
Ti12y11 | Ti12 | y | 11 |
Ti12z11 | Ti12 | z | 11 |
Ti12x12 | Ti12 | x | 12 |
Ti12y12 | Ti12 | y | 12 |
Ti12z12 | Ti12 | z | 12 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Fe12x7 | Fe12 | x | 7 |
Fe12y7 | Fe12 | y | 7 |
Fe12z7 | Fe12 | z | 7 |
Fe12x8 | Fe12 | x | 8 |
Fe12y8 | Fe12 | y | 8 |
Fe12z8 | Fe12 | z | 8 |
Fe12x9 | Fe12 | x | 9 |
Fe12y9 | Fe12 | y | 9 |
Fe12z9 | Fe12 | z | 9 |
Fe12x10 | Fe12 | x | 10 |
Fe12y10 | Fe12 | y | 10 |
Fe12z10 | Fe12 | z | 10 |
Fe12x11 | Fe12 | x | 11 |
Fe12y11 | Fe12 | y | 11 |
Fe12z11 | Fe12 | z | 11 |
Fe12x12 | Fe12 | x | 12 |
Fe12y12 | Fe12 | y | 12 |
Fe12z12 | Fe12 | z | 12 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti13x7 | Ti13 | x | 7 |
Ti13y7 | Ti13 | y | 7 |
Ti13z7 | Ti13 | z | 7 |
Ti13x8 | Ti13 | x | 8 |
Ti13y8 | Ti13 | y | 8 |
Ti13z8 | Ti13 | z | 8 |
Ti13x9 | Ti13 | x | 9 |
Ti13y9 | Ti13 | y | 9 |
Ti13z9 | Ti13 | z | 9 |
Ti13x10 | Ti13 | x | 10 |
Ti13y10 | Ti13 | y | 10 |
Ti13z10 | Ti13 | z | 10 |
Ti13x11 | Ti13 | x | 11 |
Ti13y11 | Ti13 | y | 11 |
Ti13z11 | Ti13 | z | 11 |
Ti13x12 | Ti13 | x | 12 |
Ti13y12 | Ti13 | y | 12 |
Ti13z12 | Ti13 | z | 12 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Fe13x7 | Fe13 | x | 7 |
Fe13y7 | Fe13 | y | 7 |
Fe13z7 | Fe13 | z | 7 |
Fe13x8 | Fe13 | x | 8 |
Fe13y8 | Fe13 | y | 8 |
Fe13z8 | Fe13 | z | 8 |
Fe13x9 | Fe13 | x | 9 |
Fe13y9 | Fe13 | y | 9 |
Fe13z9 | Fe13 | z | 9 |
Fe13x10 | Fe13 | x | 10 |
Fe13y10 | Fe13 | y | 10 |
Fe13z10 | Fe13 | z | 10 |
Fe13x11 | Fe13 | x | 11 |
Fe13y11 | Fe13 | y | 11 |
Fe13z11 | Fe13 | z | 11 |
Fe13x12 | Fe13 | x | 12 |
Fe13y12 | Fe13 | y | 12 |
Fe13z12 | Fe13 | z | 12 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Ti21x7 | Ti21 | x | 7 |
Ti21y7 | Ti21 | y | 7 |
Ti21z7 | Ti21 | z | 7 |
Ti21x8 | Ti21 | x | 8 |
Ti21y8 | Ti21 | y | 8 |
Ti21z8 | Ti21 | z | 8 |
Ti21x9 | Ti21 | x | 9 |
Ti21y9 | Ti21 | y | 9 |
Ti21z9 | Ti21 | z | 9 |
Ti21x10 | Ti21 | x | 10 |
Ti21y10 | Ti21 | y | 10 |
Ti21z10 | Ti21 | z | 10 |
Ti21x11 | Ti21 | x | 11 |
Ti21y11 | Ti21 | y | 11 |
Ti21z11 | Ti21 | z | 11 |
Ti21x12 | Ti21 | x | 12 |
Ti21y12 | Ti21 | y | 12 |
Ti21z12 | Ti21 | z | 12 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Fe21x7 | Fe21 | x | 7 |
Fe21y7 | Fe21 | y | 7 |
Fe21z7 | Fe21 | z | 7 |
Fe21x8 | Fe21 | x | 8 |
Fe21y8 | Fe21 | y | 8 |
Fe21z8 | Fe21 | z | 8 |
Fe21x9 | Fe21 | x | 9 |
Fe21y9 | Fe21 | y | 9 |
Fe21z9 | Fe21 | z | 9 |
Fe21x10 | Fe21 | x | 10 |
Fe21y10 | Fe21 | y | 10 |
Fe21z10 | Fe21 | z | 10 |
Fe21x11 | Fe21 | x | 11 |
Fe21y11 | Fe21 | y | 11 |
Fe21z11 | Fe21 | z | 11 |
Fe21x12 | Fe21 | x | 12 |
Fe21y12 | Fe21 | y | 12 |
Fe21z12 | Fe21 | z | 12 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Ti22x7 | Ti22 | x | 7 |
Ti22y7 | Ti22 | y | 7 |
Ti22z7 | Ti22 | z | 7 |
Ti22x8 | Ti22 | x | 8 |
Ti22y8 | Ti22 | y | 8 |
Ti22z8 | Ti22 | z | 8 |
Ti22x9 | Ti22 | x | 9 |
Ti22y9 | Ti22 | y | 9 |
Ti22z9 | Ti22 | z | 9 |
Ti22x10 | Ti22 | x | 10 |
Ti22y10 | Ti22 | y | 10 |
Ti22z10 | Ti22 | z | 10 |
Ti22x11 | Ti22 | x | 11 |
Ti22y11 | Ti22 | y | 11 |
Ti22z11 | Ti22 | z | 11 |
Ti22x12 | Ti22 | x | 12 |
Ti22y12 | Ti22 | y | 12 |
Ti22z12 | Ti22 | z | 12 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Fe22x7 | Fe22 | x | 7 |
Fe22y7 | Fe22 | y | 7 |
Fe22z7 | Fe22 | z | 7 |
Fe22x8 | Fe22 | x | 8 |
Fe22y8 | Fe22 | y | 8 |
Fe22z8 | Fe22 | z | 8 |
Fe22x9 | Fe22 | x | 9 |
Fe22y9 | Fe22 | y | 9 |
Fe22z9 | Fe22 | z | 9 |
Fe22x10 | Fe22 | x | 10 |
Fe22y10 | Fe22 | y | 10 |
Fe22z10 | Fe22 | z | 10 |
Fe22x11 | Fe22 | x | 11 |
Fe22y11 | Fe22 | y | 11 |
Fe22z11 | Fe22 | z | 11 |
Fe22x12 | Fe22 | x | 12 |
Fe22y12 | Fe22 | y | 12 |
Fe22z12 | Fe22 | z | 12 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Ti23x7 | Ti23 | x | 7 |
Ti23y7 | Ti23 | y | 7 |
Ti23z7 | Ti23 | z | 7 |
Ti23x8 | Ti23 | x | 8 |
Ti23y8 | Ti23 | y | 8 |
Ti23z8 | Ti23 | z | 8 |
Ti23x9 | Ti23 | x | 9 |
Ti23y9 | Ti23 | y | 9 |
Ti23z9 | Ti23 | z | 9 |
Ti23x10 | Ti23 | x | 10 |
Ti23y10 | Ti23 | y | 10 |
Ti23z10 | Ti23 | z | 10 |
Ti23x11 | Ti23 | x | 11 |
Ti23y11 | Ti23 | y | 11 |
Ti23z11 | Ti23 | z | 11 |
Ti23x12 | Ti23 | x | 12 |
Ti23y12 | Ti23 | y | 12 |
Ti23z12 | Ti23 | z | 12 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Fe23x7 | Fe23 | x | 7 |
Fe23y7 | Fe23 | y | 7 |
Fe23z7 | Fe23 | z | 7 |
Fe23x8 | Fe23 | x | 8 |
Fe23y8 | Fe23 | y | 8 |
Fe23z8 | Fe23 | z | 8 |
Fe23x9 | Fe23 | x | 9 |
Fe23y9 | Fe23 | y | 9 |
Fe23z9 | Fe23 | z | 9 |
Fe23x10 | Fe23 | x | 10 |
Fe23y10 | Fe23 | y | 10 |
Fe23z10 | Fe23 | z | 10 |
Fe23x11 | Fe23 | x | 11 |
Fe23y11 | Fe23 | y | 11 |
Fe23z11 | Fe23 | z | 11 |
Fe23x12 | Fe23 | x | 12 |
Fe23y12 | Fe23 | y | 12 |
Fe23z12 | Fe23 | z | 12 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0080(7) |
Ti11y1 | 0 | 0.1427(4) |
Ti11z1 | 0 | -0.0589(5) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0005(3) |
Ti11y6 | 0 | 0.0113(2) |
Ti11z6 | 0 | 0.0219(2) |
Ti11x7 | 0 | 0 |
Ti11y7 | 0 | 0 |
Ti11z7 | 0 | 0 |
Ti11x8 | 0 | 0 |
Ti11y8 | 0 | 0 |
Ti11z8 | 0 | 0 |
Ti11x9 | 0 | 0 |
Ti11y9 | 0 | 0 |
Ti11z9 | 0 | 0 |
Ti11x10 | 0 | 0 |
Ti11y10 | 0 | 0 |
Ti11z10 | 0 | 0 |
Ti11x11 | 0 | 0 |
Ti11y11 | 0 | 0 |
Ti11z11 | 0 | 0 |
Ti11x12 | 0 | 0.0018(2) |
Ti11y12 | 0 | -0.00830(16) |
Ti11z12 | 0 | -0.0121(4) |
Fe11x1 | 0 | -0.0080(7) |
Fe11y1 | 0 | 0.1427(4) |
Fe11z1 | 0 | -0.0589(5) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0005(3) |
Fe11y6 | 0 | 0.0113(2) |
Fe11z6 | 0 | 0.0219(2) |
Fe11x7 | 0 | 0 |
Fe11y7 | 0 | 0 |
Fe11z7 | 0 | 0 |
Fe11x8 | 0 | 0 |
Fe11y8 | 0 | 0 |
Fe11z8 | 0 | 0 |
Fe11x9 | 0 | 0 |
Fe11y9 | 0 | 0 |
Fe11z9 | 0 | 0 |
Fe11x10 | 0 | 0 |
Fe11y10 | 0 | 0 |
Fe11z10 | 0 | 0 |
Fe11x11 | 0 | 0 |
Fe11y11 | 0 | 0 |
Fe11z11 | 0 | 0 |
Fe11x12 | 0 | 0.0018(2) |
Fe11y12 | 0 | -0.00830(16) |
Fe11z12 | 0 | -0.0121(4) |
Ti12x1 | 0 | -0.0080(7) |
Ti12y1 | 0 | 0.1427(4) |
Ti12z1 | 0 | -0.0589(5) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0005(3) |
Ti12y6 | 0 | 0.0113(2) |
Ti12z6 | 0 | 0.0219(2) |
Ti12x7 | 0 | 0 |
Ti12y7 | 0 | 0 |
Ti12z7 | 0 | 0 |
Ti12x8 | 0 | 0 |
Ti12y8 | 0 | 0 |
Ti12z8 | 0 | 0 |
Ti12x9 | 0 | 0 |
Ti12y9 | 0 | 0 |
Ti12z9 | 0 | 0 |
Ti12x10 | 0 | 0 |
Ti12y10 | 0 | 0 |
Ti12z10 | 0 | 0 |
Ti12x11 | 0 | 0 |
Ti12y11 | 0 | 0 |
Ti12z11 | 0 | 0 |
Ti12x12 | 0 | 0.0018(2) |
Ti12y12 | 0 | -0.00830(16) |
Ti12z12 | 0 | -0.0121(4) |
Fe12x1 | 0 | -0.0080(7) |
Fe12y1 | 0 | 0.1427(4) |
Fe12z1 | 0 | -0.0589(5) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0005(3) |
Fe12y6 | 0 | 0.0113(2) |
Fe12z6 | 0 | 0.0219(2) |
Fe12x7 | 0 | 0 |
Fe12y7 | 0 | 0 |
Fe12z7 | 0 | 0 |
Fe12x8 | 0 | 0 |
Fe12y8 | 0 | 0 |
Fe12z8 | 0 | 0 |
Fe12x9 | 0 | 0 |
Fe12y9 | 0 | 0 |
Fe12z9 | 0 | 0 |
Fe12x10 | 0 | 0 |
Fe12y10 | 0 | 0 |
Fe12z10 | 0 | 0 |
Fe12x11 | 0 | 0 |
Fe12y11 | 0 | 0 |
Fe12z11 | 0 | 0 |
Fe12x12 | 0 | 0.0018(2) |
Fe12y12 | 0 | -0.00830(16) |
Fe12z12 | 0 | -0.0121(4) |
Ti13x1 | 0 | -0.0080(7) |
Ti13y1 | 0 | 0.1427(4) |
Ti13z1 | 0 | -0.0589(5) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0005(3) |
Ti13y6 | 0 | 0.0113(2) |
Ti13z6 | 0 | 0.0219(2) |
Ti13x7 | 0 | 0 |
Ti13y7 | 0 | 0 |
Ti13z7 | 0 | 0 |
Ti13x8 | 0 | 0 |
Ti13y8 | 0 | 0 |
Ti13z8 | 0 | 0 |
Ti13x9 | 0 | 0 |
Ti13y9 | 0 | 0 |
Ti13z9 | 0 | 0 |
Ti13x10 | 0 | 0 |
Ti13y10 | 0 | 0 |
Ti13z10 | 0 | 0 |
Ti13x11 | 0 | 0 |
Ti13y11 | 0 | 0 |
Ti13z11 | 0 | 0 |
Ti13x12 | 0 | 0.0018(2) |
Ti13y12 | 0 | -0.00830(16) |
Ti13z12 | 0 | -0.0121(4) |
Fe13x1 | 0 | -0.0080(7) |
Fe13y1 | 0 | 0.1427(4) |
Fe13z1 | 0 | -0.0589(5) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0005(3) |
Fe13y6 | 0 | 0.0113(2) |
Fe13z6 | 0 | 0.0219(2) |
Fe13x7 | 0 | 0 |
Fe13y7 | 0 | 0 |
Fe13z7 | 0 | 0 |
Fe13x8 | 0 | 0 |
Fe13y8 | 0 | 0 |
Fe13z8 | 0 | 0 |
Fe13x9 | 0 | 0 |
Fe13y9 | 0 | 0 |
Fe13z9 | 0 | 0 |
Fe13x10 | 0 | 0 |
Fe13y10 | 0 | 0 |
Fe13z10 | 0 | 0 |
Fe13x11 | 0 | 0 |
Fe13y11 | 0 | 0 |
Fe13z11 | 0 | 0 |
Fe13x12 | 0 | 0.0018(2) |
Fe13y12 | 0 | -0.00830(16) |
Fe13z12 | 0 | -0.0121(4) |
Ti21x1 | 0 | -0.0019(7) |
Ti21y1 | 0 | 0.1560(4) |
Ti21z1 | 0 | -0.0630(5) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0019(3) |
Ti21y6 | 0 | 0.0099(2) |
Ti21z6 | 0 | 0.0219(2) |
Ti21x7 | 0 | 0 |
Ti21y7 | 0 | 0 |
Ti21z7 | 0 | 0 |
Ti21x8 | 0 | 0 |
Ti21y8 | 0 | 0 |
Ti21z8 | 0 | 0 |
Ti21x9 | 0 | 0 |
Ti21y9 | 0 | 0 |
Ti21z9 | 0 | 0 |
Ti21x10 | 0 | 0 |
Ti21y10 | 0 | 0 |
Ti21z10 | 0 | 0 |
Ti21x11 | 0 | 0 |
Ti21y11 | 0 | 0 |
Ti21z11 | 0 | 0 |
Ti21x12 | 0 | 0.0035(2) |
Ti21y12 | 0 | -0.00903(15) |
Ti21z12 | 0 | -0.0116(4) |
Fe21x1 | 0 | -0.0019(7) |
Fe21y1 | 0 | 0.1560(4) |
Fe21z1 | 0 | -0.0630(5) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0019(3) |
Fe21y6 | 0 | 0.0099(2) |
Fe21z6 | 0 | 0.0219(2) |
Fe21x7 | 0 | 0 |
Fe21y7 | 0 | 0 |
Fe21z7 | 0 | 0 |
Fe21x8 | 0 | 0 |
Fe21y8 | 0 | 0 |
Fe21z8 | 0 | 0 |
Fe21x9 | 0 | 0 |
Fe21y9 | 0 | 0 |
Fe21z9 | 0 | 0 |
Fe21x10 | 0 | 0 |
Fe21y10 | 0 | 0 |
Fe21z10 | 0 | 0 |
Fe21x11 | 0 | 0 |
Fe21y11 | 0 | 0 |
Fe21z11 | 0 | 0 |
Fe21x12 | 0 | 0.0035(2) |
Fe21y12 | 0 | -0.00903(15) |
Fe21z12 | 0 | -0.0116(4) |
Ti22x1 | 0 | -0.0019(7) |
Ti22y1 | 0 | 0.1560(4) |
Ti22z1 | 0 | -0.0630(5) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0019(3) |
Ti22y6 | 0 | 0.0099(2) |
Ti22z6 | 0 | 0.0219(2) |
Ti22x7 | 0 | 0 |
Ti22y7 | 0 | 0 |
Ti22z7 | 0 | 0 |
Ti22x8 | 0 | 0 |
Ti22y8 | 0 | 0 |
Ti22z8 | 0 | 0 |
Ti22x9 | 0 | 0 |
Ti22y9 | 0 | 0 |
Ti22z9 | 0 | 0 |
Ti22x10 | 0 | 0 |
Ti22y10 | 0 | 0 |
Ti22z10 | 0 | 0 |
Ti22x11 | 0 | 0 |
Ti22y11 | 0 | 0 |
Ti22z11 | 0 | 0 |
Ti22x12 | 0 | 0.0035(2) |
Ti22y12 | 0 | -0.00903(15) |
Ti22z12 | 0 | -0.0116(4) |
Fe22x1 | 0 | -0.0019(7) |
Fe22y1 | 0 | 0.1560(4) |
Fe22z1 | 0 | -0.0630(5) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0019(3) |
Fe22y6 | 0 | 0.0099(2) |
Fe22z6 | 0 | 0.0219(2) |
Fe22x7 | 0 | 0 |
Fe22y7 | 0 | 0 |
Fe22z7 | 0 | 0 |
Fe22x8 | 0 | 0 |
Fe22y8 | 0 | 0 |
Fe22z8 | 0 | 0 |
Fe22x9 | 0 | 0 |
Fe22y9 | 0 | 0 |
Fe22z9 | 0 | 0 |
Fe22x10 | 0 | 0 |
Fe22y10 | 0 | 0 |
Fe22z10 | 0 | 0 |
Fe22x11 | 0 | 0 |
Fe22y11 | 0 | 0 |
Fe22z11 | 0 | 0 |
Fe22x12 | 0 | 0.0035(2) |
Fe22y12 | 0 | -0.00903(15) |
Fe22z12 | 0 | -0.0116(4) |
Ti23x1 | 0 | -0.0019(7) |
Ti23y1 | 0 | 0.1560(4) |
Ti23z1 | 0 | -0.0630(5) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0019(3) |
Ti23y6 | 0 | 0.0099(2) |
Ti23z6 | 0 | 0.0219(2) |
Ti23x7 | 0 | 0 |
Ti23y7 | 0 | 0 |
Ti23z7 | 0 | 0 |
Ti23x8 | 0 | 0 |
Ti23y8 | 0 | 0 |
Ti23z8 | 0 | 0 |
Ti23x9 | 0 | 0 |
Ti23y9 | 0 | 0 |
Ti23z9 | 0 | 0 |
Ti23x10 | 0 | 0 |
Ti23y10 | 0 | 0 |
Ti23z10 | 0 | 0 |
Ti23x11 | 0 | 0 |
Ti23y11 | 0 | 0 |
Ti23z11 | 0 | 0 |
Ti23x12 | 0 | 0.0035(2) |
Ti23y12 | 0 | -0.00903(15) |
Ti23z12 | 0 | -0.0116(4) |
Fe23x1 | 0 | -0.0019(7) |
Fe23y1 | 0 | 0.1560(4) |
Fe23z1 | 0 | -0.0630(5) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0019(3) |
Fe23y6 | 0 | 0.0099(2) |
Fe23z6 | 0 | 0.0219(2) |
Fe23x7 | 0 | 0 |
Fe23y7 | 0 | 0 |
Fe23z7 | 0 | 0 |
Fe23x8 | 0 | 0 |
Fe23y8 | 0 | 0 |
Fe23z8 | 0 | 0 |
Fe23x9 | 0 | 0 |
Fe23y9 | 0 | 0 |
Fe23z9 | 0 | 0 |
Fe23x10 | 0 | 0 |
Fe23y10 | 0 | 0 |
Fe23z10 | 0 | 0 |
Fe23x11 | 0 | 0 |
Fe23y11 | 0 | 0 |
Fe23z11 | 0 | 0 |
Fe23x12 | 0 | 0.0035(2) |
Fe23y12 | 0 | -0.00903(15) |
Fe23z12 | 0 | -0.0116(4) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | 0.00013(9) |
La1 | y | 1 | 1 | 0.03771(4) |
La1 | z | 1 | 1 | 0.00063(5) |
La1 | x | 1 | 2 | 0.00016(3) |
La1 | y | 1 | 2 | -0.00065(4) |
La1 | z | 1 | 2 | 0.00059(4) |
O1 | x | 4 | 1 | -0.0005(5) |
O1 | y | 4 | 1 | 0.0206(6) |
O1 | z | 4 | 1 | -0.0100(5) |
O1 | x | 4 | 2 | 0.0001(3) |
O1 | y | 4 | 2 | 0.0091(5) |
O1 | z | 4 | 2 | 0.0039(6) |
O1 | x | 4 | 3 | 0.0011(6) |
O1 | y | 4 | 3 | -0.0044(8) |
O1 | z | 4 | 3 | 0.0060(8) |
O1 | x | 4 | 4 | 0.0008(4) |
O1 | y | 4 | 4 | -0.0061(6) |
O1 | z | 4 | 4 | 0.0001(6) |
O1 | x | 4 | 5 | -0.0013(8) |
O1 | y | 4 | 5 | 0.0087(10) |
O1 | z | 4 | 5 | 0.0031(10) |
O1 | x | 4 | 6 | 0 |
O1 | y | 4 | 6 | 0 |
O1 | z | 4 | 6 | 0 |
O2 | x | 5 | 1 | 0.0022(3) |
O2 | y | 5 | 1 | 0.0343(5) |
O2 | z | 5 | 1 | 0.0013(4) |
O2 | x | 5 | 2 | -0.0083(3) |
O2 | y | 5 | 2 | -0.0042(5) |
O2 | z | 5 | 2 | 0.0140(5) |
O2 | x | 5 | 3 | 0.0058(4) |
O2 | y | 5 | 3 | -0.0051(5) |
O2 | z | 5 | 3 | -0.0069(5) |
O2 | x | 5 | 4 | 0.0031(3) |
O2 | y | 5 | 4 | 0.0082(6) |
O2 | z | 5 | 4 | -0.0032(5) |
O2 | x | 5 | 5 | -0.0075(4) |
O2 | y | 5 | 5 | 0.0066(7) |
O2 | z | 5 | 5 | 0.0032(6) |
O2 | x | 5 | 6 | 0 |
O2 | y | 5 | 6 | 0 |
O2 | z | 5 | 6 | 0 |
O3 | x | 6 | 1 | -0.0023(3) |
O3 | y | 6 | 1 | 0.0366(5) |
O3 | z | 6 | 1 | 0.0005(5) |
O3 | x | 6 | 2 | 0.0064(3) |
O3 | y | 6 | 2 | 0.0028(5) |
O3 | z | 6 | 2 | 0.0158(5) |
O3 | x | 6 | 3 | -0.0064(4) |
O3 | y | 6 | 3 | -0.0011(5) |
O3 | z | 6 | 3 | -0.0069(5) |
O3 | x | 6 | 4 | -0.0013(3) |
O3 | y | 6 | 4 | 0.0046(6) |
O3 | z | 6 | 4 | -0.0032(5) |
O3 | x | 6 | 5 | 0.0065(4) |
O3 | y | 6 | 5 | 0.0027(7) |
O3 | z | 6 | 5 | 0.0035(6) |
O3 | x | 6 | 6 | 0 |
O3 | y | 6 | 6 | 0 |
O3 | z | 6 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00032(6) |
La1 | U22 | 1 | 1 | 0.00027(7) |
La1 | U33 | 1 | 1 | 0.00068(9) |
La1 | U12 | 1 | 1 | 0.00018(9) |
La1 | U13 | 1 | 1 | 0.00001(7) |
La1 | U23 | 1 | 1 | 0.00015(10) |
La1 | U11 | 1 | 2 | 0.00054(7) |
La1 | U22 | 1 | 2 | 0.00075(7) |
La1 | U33 | 1 | 2 | -0.00082(10) |
La1 | U12 | 1 | 2 | -0.00008(10) |
La1 | U13 | 1 | 2 | 0.00030(15) |
La1 | U23 | 1 | 2 | 0.00018(8) |
La1 | U11 | 1 | 3 | -0.00029(9) |
La1 | U22 | 1 | 3 | 0.00060(10) |
La1 | U33 | 1 | 3 | -0.00021(13) |
La1 | U12 | 1 | 3 | -0.00019(8) |
La1 | U13 | 1 | 3 | -0.00006(10) |
La1 | U23 | 1 | 3 | -0.00063(17) |
La1 | U11 | 1 | 4 | 0 |
La1 | U22 | 1 | 4 | 0 |
La1 | U33 | 1 | 4 | 0 |
La1 | U12 | 1 | 4 | 0 |
La1 | U13 | 1 | 4 | 0 |
La1 | U23 | 1 | 4 | 0 |
Structural Formula Sum: Fe0.571 La3.429 O11.429 Ti2.858 [ Help ]
Formula weight: 827.9 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+3/4,x2+1/2,x3,x4+1/4 |
6 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
7 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
8 | x1+3/4,x2,-x3+1/2,x4+1/4 |
9 | x1+1/2,x2,x3,x4+1/2 |
10 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
11 | -x1+1/2,-x2,-x3,-x4 |
12 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8267(19) Å [ Help ]
b: 5.2714(16) Å [ Help ]
c: 5.5503(17) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.019(17) ° [ Help ]
Volume: 228.99(11) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.071429 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 200 K [ Help ]
μ: 18.927 mm-1 [ Help ]
Absorption correction type: numerical [ Help ]
Absorption correction remarks: SADABS (version2008/1) [ Help ]
Minimum transmission factor: 0.3409 [ Help ]
Maximum transmission factor: 0.7478 [ Help ]
Total nb. of reflections: 12184 [ Help ]
Nb. of observed reflections: 11268 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0635 [ Help ]
wR(obs): 0.0833 [ Help ]
R(all): 0.0691 [ Help ]
wR(all): 0.0841 [ Help ]
S(all): 3.29 [ Help ]
S(obs): 3.39 [ Help ]
Nb. of reflections: 12184 [ Help ]
Nb. of parameters: 161 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0059 [ Help ]
Δ/σ(mean): 0.0007 [ Help ]
Δρ(max): 20.11 e_Å-3 [ Help ]
Δρ(min): -4.91 e_Å-3 [ Help ]
Extinction method: none [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00024(3) | -0.01818(4) | 0.00275(4) | Uani | 0.00597(6) | 16 | 0.1429 | d | ? | ? | ? |
La2 | La | -0.00149(10) | 0.29721(8) | -0.08973(14) | Uani | 0.00646(9) | 16 | 0.0357 | d | ? | ? | ? |
La3 | La | -0.00275(10) | -0.23131(10) | 0.04733(15) | Uani | 0.01140(12) | 16 | 0.0357 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0044(2) | 8 | 0.022(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0044(2) | 8 | 0.050(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0044(2) | 16 | 0.0269(10) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0044(2) | 16 | 0.0088(10) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0044(2) | 16 | 0.0345(9) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0044(2) | 16 | 0.0012(9) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0040(2) | 8 | 0.023(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0040(2) | 8 | 0.048(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0040(2) | 16 | 0.0268(10) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0040(2) | 16 | 0.0089(10) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0040(2) | 16 | 0.0331(9) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0040(2) | 16 | 0.0026(9) | d | ? | ? | ? |
O1 | O | -0.0003(3) | 0.0074(4) | 0.5576(5) | Uani | 0.0084(5) | 16 | 0.2143 | d | ? | ? | ? |
O2 | O | 0.2247(3) | 0.2141(5) | 0.2101(4) | Uani | 0.0076(5) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7765(3) | 0.2076(5) | 0.2059(4) | Uani | 0.0078(5) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00274(10) | 0.01057(9) | 0.00461(14) | 0.00003(9) | -0.00012(12) | -0.00123(6) |
La2 | La | 0.00204(13) | 0.01371(15) | 0.0036(2) | -0.00043(18) | -0.00059(17) | -0.00175(13) |
La3 | La | 0.00211(15) | 0.02151(19) | 0.0106(3) | 0.0002(2) | -0.00032(19) | -0.00583(16) |
Ti11 | Ti | 0.0030(3) | 0.0080(3) | 0.0021(4) | -0.0029(5) | -0.0004(5) | 0.0001(2) |
Fe11 | Fe | 0.0030(3) | 0.0080(3) | 0.0021(4) | -0.0029(5) | -0.0004(5) | 0.0001(2) |
Ti12 | Ti | 0.0030(3) | 0.0080(3) | 0.0021(4) | -0.0029(5) | -0.0004(5) | 0.0001(2) |
Fe12 | Fe | 0.0030(3) | 0.0080(3) | 0.0021(4) | -0.0029(5) | -0.0004(5) | 0.0001(2) |
Ti13 | Ti | 0.0030(3) | 0.0080(3) | 0.0021(4) | -0.0029(5) | -0.0004(5) | 0.0001(2) |
Fe13 | Fe | 0.0030(3) | 0.0080(3) | 0.0021(4) | -0.0029(5) | -0.0004(5) | 0.0001(2) |
Ti21 | Ti | 0.0028(3) | 0.0075(2) | 0.0016(4) | -0.0029(5) | -0.0004(5) | 0.0006(2) |
Fe21 | Fe | 0.0028(3) | 0.0075(2) | 0.0016(4) | -0.0029(5) | -0.0004(5) | 0.0006(2) |
Ti22 | Ti | 0.0028(3) | 0.0075(2) | 0.0016(4) | -0.0029(5) | -0.0004(5) | 0.0006(2) |
Fe22 | Fe | 0.0028(3) | 0.0075(2) | 0.0016(4) | -0.0029(5) | -0.0004(5) | 0.0006(2) |
Ti23 | Ti | 0.0028(3) | 0.0075(2) | 0.0016(4) | -0.0029(5) | -0.0004(5) | 0.0006(2) |
Fe23 | Fe | 0.0028(3) | 0.0075(2) | 0.0016(4) | -0.0029(5) | -0.0004(5) | 0.0006(2) |
O1 | O | 0.0002(8) | 0.0158(9) | 0.0092(12) | -0.0001(8) | 0.0003(6) | -0.0005(7) |
O2 | O | 0.0070(11) | 0.0136(8) | 0.0021(10) | -0.0011(7) | 0.0006(7) | 0.0023(7) |
O3 | O | 0.0067(10) | 0.0135(8) | 0.0033(10) | 0.0002(7) | 0.0011(7) | 0.0022(7) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | 10 |
11 | 11 |
12 | 12 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.142857 | 0.950000 |
2 | 0.110521 | 0.035714 | 0.950000 |
3 | -0.105816 | 0.035714 | 0.950000 |
4 | 0.000000 | 0.214286 | 0.950000 |
5 | 0.000000 | 0.250000 | 0.950000 |
6 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.1429 |
La2 | 0.110521(6) | 0.0357 |
La3 | -0.105816(7) | 0.0357 |
Ti11 | 0 | 0.0714 |
Fe11 | 0 | 0.0714 |
Ti12 | 0.0536 | 0.0357 |
Fe12 | 0.0536 | 0.0357 |
Ti13 | 0.0893 | 0.0357 |
Fe13 | 0.0893 | 0.0357 |
Ti21 | 0 | 0.0714 |
Fe21 | 0 | 0.0714 |
Ti22 | 0.0536 | 0.0357 |
Fe22 | 0.0536 | 0.0357 |
Ti23 | 0.0893 | 0.0357 |
Fe23 | 0.0893 | 0.0357 |
O1 | 0 | 0.2143 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Ti11x7 | Ti11 | x | 7 |
Ti11y7 | Ti11 | y | 7 |
Ti11z7 | Ti11 | z | 7 |
Ti11x8 | Ti11 | x | 8 |
Ti11y8 | Ti11 | y | 8 |
Ti11z8 | Ti11 | z | 8 |
Ti11x9 | Ti11 | x | 9 |
Ti11y9 | Ti11 | y | 9 |
Ti11z9 | Ti11 | z | 9 |
Ti11x10 | Ti11 | x | 10 |
Ti11y10 | Ti11 | y | 10 |
Ti11z10 | Ti11 | z | 10 |
Ti11x11 | Ti11 | x | 11 |
Ti11y11 | Ti11 | y | 11 |
Ti11z11 | Ti11 | z | 11 |
Ti11x12 | Ti11 | x | 12 |
Ti11y12 | Ti11 | y | 12 |
Ti11z12 | Ti11 | z | 12 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Fe11x7 | Fe11 | x | 7 |
Fe11y7 | Fe11 | y | 7 |
Fe11z7 | Fe11 | z | 7 |
Fe11x8 | Fe11 | x | 8 |
Fe11y8 | Fe11 | y | 8 |
Fe11z8 | Fe11 | z | 8 |
Fe11x9 | Fe11 | x | 9 |
Fe11y9 | Fe11 | y | 9 |
Fe11z9 | Fe11 | z | 9 |
Fe11x10 | Fe11 | x | 10 |
Fe11y10 | Fe11 | y | 10 |
Fe11z10 | Fe11 | z | 10 |
Fe11x11 | Fe11 | x | 11 |
Fe11y11 | Fe11 | y | 11 |
Fe11z11 | Fe11 | z | 11 |
Fe11x12 | Fe11 | x | 12 |
Fe11y12 | Fe11 | y | 12 |
Fe11z12 | Fe11 | z | 12 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Ti12x7 | Ti12 | x | 7 |
Ti12y7 | Ti12 | y | 7 |
Ti12z7 | Ti12 | z | 7 |
Ti12x8 | Ti12 | x | 8 |
Ti12y8 | Ti12 | y | 8 |
Ti12z8 | Ti12 | z | 8 |
Ti12x9 | Ti12 | x | 9 |
Ti12y9 | Ti12 | y | 9 |
Ti12z9 | Ti12 | z | 9 |
Ti12x10 | Ti12 | x | 10 |
Ti12y10 | Ti12 | y | 10 |
Ti12z10 | Ti12 | z | 10 |
Ti12x11 | Ti12 | x | 11 |
Ti12y11 | Ti12 | y | 11 |
Ti12z11 | Ti12 | z | 11 |
Ti12x12 | Ti12 | x | 12 |
Ti12y12 | Ti12 | y | 12 |
Ti12z12 | Ti12 | z | 12 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Fe12x7 | Fe12 | x | 7 |
Fe12y7 | Fe12 | y | 7 |
Fe12z7 | Fe12 | z | 7 |
Fe12x8 | Fe12 | x | 8 |
Fe12y8 | Fe12 | y | 8 |
Fe12z8 | Fe12 | z | 8 |
Fe12x9 | Fe12 | x | 9 |
Fe12y9 | Fe12 | y | 9 |
Fe12z9 | Fe12 | z | 9 |
Fe12x10 | Fe12 | x | 10 |
Fe12y10 | Fe12 | y | 10 |
Fe12z10 | Fe12 | z | 10 |
Fe12x11 | Fe12 | x | 11 |
Fe12y11 | Fe12 | y | 11 |
Fe12z11 | Fe12 | z | 11 |
Fe12x12 | Fe12 | x | 12 |
Fe12y12 | Fe12 | y | 12 |
Fe12z12 | Fe12 | z | 12 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti13x7 | Ti13 | x | 7 |
Ti13y7 | Ti13 | y | 7 |
Ti13z7 | Ti13 | z | 7 |
Ti13x8 | Ti13 | x | 8 |
Ti13y8 | Ti13 | y | 8 |
Ti13z8 | Ti13 | z | 8 |
Ti13x9 | Ti13 | x | 9 |
Ti13y9 | Ti13 | y | 9 |
Ti13z9 | Ti13 | z | 9 |
Ti13x10 | Ti13 | x | 10 |
Ti13y10 | Ti13 | y | 10 |
Ti13z10 | Ti13 | z | 10 |
Ti13x11 | Ti13 | x | 11 |
Ti13y11 | Ti13 | y | 11 |
Ti13z11 | Ti13 | z | 11 |
Ti13x12 | Ti13 | x | 12 |
Ti13y12 | Ti13 | y | 12 |
Ti13z12 | Ti13 | z | 12 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Fe13x7 | Fe13 | x | 7 |
Fe13y7 | Fe13 | y | 7 |
Fe13z7 | Fe13 | z | 7 |
Fe13x8 | Fe13 | x | 8 |
Fe13y8 | Fe13 | y | 8 |
Fe13z8 | Fe13 | z | 8 |
Fe13x9 | Fe13 | x | 9 |
Fe13y9 | Fe13 | y | 9 |
Fe13z9 | Fe13 | z | 9 |
Fe13x10 | Fe13 | x | 10 |
Fe13y10 | Fe13 | y | 10 |
Fe13z10 | Fe13 | z | 10 |
Fe13x11 | Fe13 | x | 11 |
Fe13y11 | Fe13 | y | 11 |
Fe13z11 | Fe13 | z | 11 |
Fe13x12 | Fe13 | x | 12 |
Fe13y12 | Fe13 | y | 12 |
Fe13z12 | Fe13 | z | 12 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Ti21x7 | Ti21 | x | 7 |
Ti21y7 | Ti21 | y | 7 |
Ti21z7 | Ti21 | z | 7 |
Ti21x8 | Ti21 | x | 8 |
Ti21y8 | Ti21 | y | 8 |
Ti21z8 | Ti21 | z | 8 |
Ti21x9 | Ti21 | x | 9 |
Ti21y9 | Ti21 | y | 9 |
Ti21z9 | Ti21 | z | 9 |
Ti21x10 | Ti21 | x | 10 |
Ti21y10 | Ti21 | y | 10 |
Ti21z10 | Ti21 | z | 10 |
Ti21x11 | Ti21 | x | 11 |
Ti21y11 | Ti21 | y | 11 |
Ti21z11 | Ti21 | z | 11 |
Ti21x12 | Ti21 | x | 12 |
Ti21y12 | Ti21 | y | 12 |
Ti21z12 | Ti21 | z | 12 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Fe21x7 | Fe21 | x | 7 |
Fe21y7 | Fe21 | y | 7 |
Fe21z7 | Fe21 | z | 7 |
Fe21x8 | Fe21 | x | 8 |
Fe21y8 | Fe21 | y | 8 |
Fe21z8 | Fe21 | z | 8 |
Fe21x9 | Fe21 | x | 9 |
Fe21y9 | Fe21 | y | 9 |
Fe21z9 | Fe21 | z | 9 |
Fe21x10 | Fe21 | x | 10 |
Fe21y10 | Fe21 | y | 10 |
Fe21z10 | Fe21 | z | 10 |
Fe21x11 | Fe21 | x | 11 |
Fe21y11 | Fe21 | y | 11 |
Fe21z11 | Fe21 | z | 11 |
Fe21x12 | Fe21 | x | 12 |
Fe21y12 | Fe21 | y | 12 |
Fe21z12 | Fe21 | z | 12 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Ti22x7 | Ti22 | x | 7 |
Ti22y7 | Ti22 | y | 7 |
Ti22z7 | Ti22 | z | 7 |
Ti22x8 | Ti22 | x | 8 |
Ti22y8 | Ti22 | y | 8 |
Ti22z8 | Ti22 | z | 8 |
Ti22x9 | Ti22 | x | 9 |
Ti22y9 | Ti22 | y | 9 |
Ti22z9 | Ti22 | z | 9 |
Ti22x10 | Ti22 | x | 10 |
Ti22y10 | Ti22 | y | 10 |
Ti22z10 | Ti22 | z | 10 |
Ti22x11 | Ti22 | x | 11 |
Ti22y11 | Ti22 | y | 11 |
Ti22z11 | Ti22 | z | 11 |
Ti22x12 | Ti22 | x | 12 |
Ti22y12 | Ti22 | y | 12 |
Ti22z12 | Ti22 | z | 12 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Fe22x7 | Fe22 | x | 7 |
Fe22y7 | Fe22 | y | 7 |
Fe22z7 | Fe22 | z | 7 |
Fe22x8 | Fe22 | x | 8 |
Fe22y8 | Fe22 | y | 8 |
Fe22z8 | Fe22 | z | 8 |
Fe22x9 | Fe22 | x | 9 |
Fe22y9 | Fe22 | y | 9 |
Fe22z9 | Fe22 | z | 9 |
Fe22x10 | Fe22 | x | 10 |
Fe22y10 | Fe22 | y | 10 |
Fe22z10 | Fe22 | z | 10 |
Fe22x11 | Fe22 | x | 11 |
Fe22y11 | Fe22 | y | 11 |
Fe22z11 | Fe22 | z | 11 |
Fe22x12 | Fe22 | x | 12 |
Fe22y12 | Fe22 | y | 12 |
Fe22z12 | Fe22 | z | 12 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Ti23x7 | Ti23 | x | 7 |
Ti23y7 | Ti23 | y | 7 |
Ti23z7 | Ti23 | z | 7 |
Ti23x8 | Ti23 | x | 8 |
Ti23y8 | Ti23 | y | 8 |
Ti23z8 | Ti23 | z | 8 |
Ti23x9 | Ti23 | x | 9 |
Ti23y9 | Ti23 | y | 9 |
Ti23z9 | Ti23 | z | 9 |
Ti23x10 | Ti23 | x | 10 |
Ti23y10 | Ti23 | y | 10 |
Ti23z10 | Ti23 | z | 10 |
Ti23x11 | Ti23 | x | 11 |
Ti23y11 | Ti23 | y | 11 |
Ti23z11 | Ti23 | z | 11 |
Ti23x12 | Ti23 | x | 12 |
Ti23y12 | Ti23 | y | 12 |
Ti23z12 | Ti23 | z | 12 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Fe23x7 | Fe23 | x | 7 |
Fe23y7 | Fe23 | y | 7 |
Fe23z7 | Fe23 | z | 7 |
Fe23x8 | Fe23 | x | 8 |
Fe23y8 | Fe23 | y | 8 |
Fe23z8 | Fe23 | z | 8 |
Fe23x9 | Fe23 | x | 9 |
Fe23y9 | Fe23 | y | 9 |
Fe23z9 | Fe23 | z | 9 |
Fe23x10 | Fe23 | x | 10 |
Fe23y10 | Fe23 | y | 10 |
Fe23z10 | Fe23 | z | 10 |
Fe23x11 | Fe23 | x | 11 |
Fe23y11 | Fe23 | y | 11 |
Fe23z11 | Fe23 | z | 11 |
Fe23x12 | Fe23 | x | 12 |
Fe23y12 | Fe23 | y | 12 |
Fe23z12 | Fe23 | z | 12 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0071(7) |
Ti11y1 | 0 | 0.1430(4) |
Ti11z1 | 0 | -0.0598(5) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0008(4) |
Ti11y6 | 0 | 0.0109(2) |
Ti11z6 | 0 | 0.0222(2) |
Ti11x7 | 0 | 0 |
Ti11y7 | 0 | 0 |
Ti11z7 | 0 | 0 |
Ti11x8 | 0 | 0 |
Ti11y8 | 0 | 0 |
Ti11z8 | 0 | 0 |
Ti11x9 | 0 | 0 |
Ti11y9 | 0 | 0 |
Ti11z9 | 0 | 0 |
Ti11x10 | 0 | 0 |
Ti11y10 | 0 | 0 |
Ti11z10 | 0 | 0 |
Ti11x11 | 0 | 0 |
Ti11y11 | 0 | 0 |
Ti11z11 | 0 | 0 |
Ti11x12 | 0 | 0.0013(2) |
Ti11y12 | 0 | -0.00808(15) |
Ti11z12 | 0 | -0.0122(4) |
Fe11x1 | 0 | -0.0071(7) |
Fe11y1 | 0 | 0.1430(4) |
Fe11z1 | 0 | -0.0598(5) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0008(4) |
Fe11y6 | 0 | 0.0109(2) |
Fe11z6 | 0 | 0.0222(2) |
Fe11x7 | 0 | 0 |
Fe11y7 | 0 | 0 |
Fe11z7 | 0 | 0 |
Fe11x8 | 0 | 0 |
Fe11y8 | 0 | 0 |
Fe11z8 | 0 | 0 |
Fe11x9 | 0 | 0 |
Fe11y9 | 0 | 0 |
Fe11z9 | 0 | 0 |
Fe11x10 | 0 | 0 |
Fe11y10 | 0 | 0 |
Fe11z10 | 0 | 0 |
Fe11x11 | 0 | 0 |
Fe11y11 | 0 | 0 |
Fe11z11 | 0 | 0 |
Fe11x12 | 0 | 0.0013(2) |
Fe11y12 | 0 | -0.00808(15) |
Fe11z12 | 0 | -0.0122(4) |
Ti12x1 | 0 | -0.0071(7) |
Ti12y1 | 0 | 0.1430(4) |
Ti12z1 | 0 | -0.0598(5) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0008(4) |
Ti12y6 | 0 | 0.0109(2) |
Ti12z6 | 0 | 0.0222(2) |
Ti12x7 | 0 | 0 |
Ti12y7 | 0 | 0 |
Ti12z7 | 0 | 0 |
Ti12x8 | 0 | 0 |
Ti12y8 | 0 | 0 |
Ti12z8 | 0 | 0 |
Ti12x9 | 0 | 0 |
Ti12y9 | 0 | 0 |
Ti12z9 | 0 | 0 |
Ti12x10 | 0 | 0 |
Ti12y10 | 0 | 0 |
Ti12z10 | 0 | 0 |
Ti12x11 | 0 | 0 |
Ti12y11 | 0 | 0 |
Ti12z11 | 0 | 0 |
Ti12x12 | 0 | 0.0013(2) |
Ti12y12 | 0 | -0.00808(15) |
Ti12z12 | 0 | -0.0122(4) |
Fe12x1 | 0 | -0.0071(7) |
Fe12y1 | 0 | 0.1430(4) |
Fe12z1 | 0 | -0.0598(5) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0008(4) |
Fe12y6 | 0 | 0.0109(2) |
Fe12z6 | 0 | 0.0222(2) |
Fe12x7 | 0 | 0 |
Fe12y7 | 0 | 0 |
Fe12z7 | 0 | 0 |
Fe12x8 | 0 | 0 |
Fe12y8 | 0 | 0 |
Fe12z8 | 0 | 0 |
Fe12x9 | 0 | 0 |
Fe12y9 | 0 | 0 |
Fe12z9 | 0 | 0 |
Fe12x10 | 0 | 0 |
Fe12y10 | 0 | 0 |
Fe12z10 | 0 | 0 |
Fe12x11 | 0 | 0 |
Fe12y11 | 0 | 0 |
Fe12z11 | 0 | 0 |
Fe12x12 | 0 | 0.0013(2) |
Fe12y12 | 0 | -0.00808(15) |
Fe12z12 | 0 | -0.0122(4) |
Ti13x1 | 0 | -0.0071(7) |
Ti13y1 | 0 | 0.1430(4) |
Ti13z1 | 0 | -0.0598(5) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0008(4) |
Ti13y6 | 0 | 0.0109(2) |
Ti13z6 | 0 | 0.0222(2) |
Ti13x7 | 0 | 0 |
Ti13y7 | 0 | 0 |
Ti13z7 | 0 | 0 |
Ti13x8 | 0 | 0 |
Ti13y8 | 0 | 0 |
Ti13z8 | 0 | 0 |
Ti13x9 | 0 | 0 |
Ti13y9 | 0 | 0 |
Ti13z9 | 0 | 0 |
Ti13x10 | 0 | 0 |
Ti13y10 | 0 | 0 |
Ti13z10 | 0 | 0 |
Ti13x11 | 0 | 0 |
Ti13y11 | 0 | 0 |
Ti13z11 | 0 | 0 |
Ti13x12 | 0 | 0.0013(2) |
Ti13y12 | 0 | -0.00808(15) |
Ti13z12 | 0 | -0.0122(4) |
Fe13x1 | 0 | -0.0071(7) |
Fe13y1 | 0 | 0.1430(4) |
Fe13z1 | 0 | -0.0598(5) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0008(4) |
Fe13y6 | 0 | 0.0109(2) |
Fe13z6 | 0 | 0.0222(2) |
Fe13x7 | 0 | 0 |
Fe13y7 | 0 | 0 |
Fe13z7 | 0 | 0 |
Fe13x8 | 0 | 0 |
Fe13y8 | 0 | 0 |
Fe13z8 | 0 | 0 |
Fe13x9 | 0 | 0 |
Fe13y9 | 0 | 0 |
Fe13z9 | 0 | 0 |
Fe13x10 | 0 | 0 |
Fe13y10 | 0 | 0 |
Fe13z10 | 0 | 0 |
Fe13x11 | 0 | 0 |
Fe13y11 | 0 | 0 |
Fe13z11 | 0 | 0 |
Fe13x12 | 0 | 0.0013(2) |
Fe13y12 | 0 | -0.00808(15) |
Fe13z12 | 0 | -0.0122(4) |
Ti21x1 | 0 | -0.0014(7) |
Ti21y1 | 0 | 0.1561(4) |
Ti21z1 | 0 | -0.0639(5) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0016(3) |
Ti21y6 | 0 | 0.00968(20) |
Ti21z6 | 0 | 0.0220(2) |
Ti21x7 | 0 | 0 |
Ti21y7 | 0 | 0 |
Ti21z7 | 0 | 0 |
Ti21x8 | 0 | 0 |
Ti21y8 | 0 | 0 |
Ti21z8 | 0 | 0 |
Ti21x9 | 0 | 0 |
Ti21y9 | 0 | 0 |
Ti21z9 | 0 | 0 |
Ti21x10 | 0 | 0 |
Ti21y10 | 0 | 0 |
Ti21z10 | 0 | 0 |
Ti21x11 | 0 | 0 |
Ti21y11 | 0 | 0 |
Ti21z11 | 0 | 0 |
Ti21x12 | 0 | 0.0031(2) |
Ti21y12 | 0 | -0.00886(15) |
Ti21z12 | 0 | -0.0119(3) |
Fe21x1 | 0 | -0.0014(7) |
Fe21y1 | 0 | 0.1561(4) |
Fe21z1 | 0 | -0.0639(5) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0016(3) |
Fe21y6 | 0 | 0.00968(20) |
Fe21z6 | 0 | 0.0220(2) |
Fe21x7 | 0 | 0 |
Fe21y7 | 0 | 0 |
Fe21z7 | 0 | 0 |
Fe21x8 | 0 | 0 |
Fe21y8 | 0 | 0 |
Fe21z8 | 0 | 0 |
Fe21x9 | 0 | 0 |
Fe21y9 | 0 | 0 |
Fe21z9 | 0 | 0 |
Fe21x10 | 0 | 0 |
Fe21y10 | 0 | 0 |
Fe21z10 | 0 | 0 |
Fe21x11 | 0 | 0 |
Fe21y11 | 0 | 0 |
Fe21z11 | 0 | 0 |
Fe21x12 | 0 | 0.0031(2) |
Fe21y12 | 0 | -0.00886(15) |
Fe21z12 | 0 | -0.0119(3) |
Ti22x1 | 0 | -0.0014(7) |
Ti22y1 | 0 | 0.1561(4) |
Ti22z1 | 0 | -0.0639(5) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0016(3) |
Ti22y6 | 0 | 0.00968(20) |
Ti22z6 | 0 | 0.0220(2) |
Ti22x7 | 0 | 0 |
Ti22y7 | 0 | 0 |
Ti22z7 | 0 | 0 |
Ti22x8 | 0 | 0 |
Ti22y8 | 0 | 0 |
Ti22z8 | 0 | 0 |
Ti22x9 | 0 | 0 |
Ti22y9 | 0 | 0 |
Ti22z9 | 0 | 0 |
Ti22x10 | 0 | 0 |
Ti22y10 | 0 | 0 |
Ti22z10 | 0 | 0 |
Ti22x11 | 0 | 0 |
Ti22y11 | 0 | 0 |
Ti22z11 | 0 | 0 |
Ti22x12 | 0 | 0.0031(2) |
Ti22y12 | 0 | -0.00886(15) |
Ti22z12 | 0 | -0.0119(3) |
Fe22x1 | 0 | -0.0014(7) |
Fe22y1 | 0 | 0.1561(4) |
Fe22z1 | 0 | -0.0639(5) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0016(3) |
Fe22y6 | 0 | 0.00968(20) |
Fe22z6 | 0 | 0.0220(2) |
Fe22x7 | 0 | 0 |
Fe22y7 | 0 | 0 |
Fe22z7 | 0 | 0 |
Fe22x8 | 0 | 0 |
Fe22y8 | 0 | 0 |
Fe22z8 | 0 | 0 |
Fe22x9 | 0 | 0 |
Fe22y9 | 0 | 0 |
Fe22z9 | 0 | 0 |
Fe22x10 | 0 | 0 |
Fe22y10 | 0 | 0 |
Fe22z10 | 0 | 0 |
Fe22x11 | 0 | 0 |
Fe22y11 | 0 | 0 |
Fe22z11 | 0 | 0 |
Fe22x12 | 0 | 0.0031(2) |
Fe22y12 | 0 | -0.00886(15) |
Fe22z12 | 0 | -0.0119(3) |
Ti23x1 | 0 | -0.0014(7) |
Ti23y1 | 0 | 0.1561(4) |
Ti23z1 | 0 | -0.0639(5) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0016(3) |
Ti23y6 | 0 | 0.00968(20) |
Ti23z6 | 0 | 0.0220(2) |
Ti23x7 | 0 | 0 |
Ti23y7 | 0 | 0 |
Ti23z7 | 0 | 0 |
Ti23x8 | 0 | 0 |
Ti23y8 | 0 | 0 |
Ti23z8 | 0 | 0 |
Ti23x9 | 0 | 0 |
Ti23y9 | 0 | 0 |
Ti23z9 | 0 | 0 |
Ti23x10 | 0 | 0 |
Ti23y10 | 0 | 0 |
Ti23z10 | 0 | 0 |
Ti23x11 | 0 | 0 |
Ti23y11 | 0 | 0 |
Ti23z11 | 0 | 0 |
Ti23x12 | 0 | 0.0031(2) |
Ti23y12 | 0 | -0.00886(15) |
Ti23z12 | 0 | -0.0119(3) |
Fe23x1 | 0 | -0.0014(7) |
Fe23y1 | 0 | 0.1561(4) |
Fe23z1 | 0 | -0.0639(5) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0016(3) |
Fe23y6 | 0 | 0.00968(20) |
Fe23z6 | 0 | 0.0220(2) |
Fe23x7 | 0 | 0 |
Fe23y7 | 0 | 0 |
Fe23z7 | 0 | 0 |
Fe23x8 | 0 | 0 |
Fe23y8 | 0 | 0 |
Fe23z8 | 0 | 0 |
Fe23x9 | 0 | 0 |
Fe23y9 | 0 | 0 |
Fe23z9 | 0 | 0 |
Fe23x10 | 0 | 0 |
Fe23y10 | 0 | 0 |
Fe23z10 | 0 | 0 |
Fe23x11 | 0 | 0 |
Fe23y11 | 0 | 0 |
Fe23z11 | 0 | 0 |
Fe23x12 | 0 | 0.0031(2) |
Fe23y12 | 0 | -0.00886(15) |
Fe23z12 | 0 | -0.0119(3) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | 0.00016(9) |
La1 | y | 1 | 1 | 0.03782(4) |
La1 | z | 1 | 1 | 0.00057(6) |
La1 | x | 1 | 2 | 0.00016(3) |
La1 | y | 1 | 2 | -0.00065(4) |
La1 | z | 1 | 2 | 0.00054(4) |
O1 | x | 4 | 1 | -0.0004(5) |
O1 | y | 4 | 1 | 0.0206(6) |
O1 | z | 4 | 1 | -0.0095(5) |
O1 | x | 4 | 2 | 0.0005(3) |
O1 | y | 4 | 2 | 0.0087(5) |
O1 | z | 4 | 2 | 0.0042(6) |
O1 | x | 4 | 3 | 0.0012(7) |
O1 | y | 4 | 3 | -0.0038(8) |
O1 | z | 4 | 3 | 0.0050(8) |
O1 | x | 4 | 4 | 0.0004(4) |
O1 | y | 4 | 4 | -0.0064(6) |
O1 | z | 4 | 4 | -0.0008(6) |
O1 | x | 4 | 5 | -0.0011(8) |
O1 | y | 4 | 5 | 0.0071(10) |
O1 | z | 4 | 5 | 0.0039(10) |
O1 | x | 4 | 6 | 0 |
O1 | y | 4 | 6 | 0 |
O1 | z | 4 | 6 | 0 |
O2 | x | 5 | 1 | 0.0019(3) |
O2 | y | 5 | 1 | 0.0348(5) |
O2 | z | 5 | 1 | 0.0016(4) |
O2 | x | 5 | 2 | -0.0083(3) |
O2 | y | 5 | 2 | -0.0044(4) |
O2 | z | 5 | 2 | 0.0137(5) |
O2 | x | 5 | 3 | 0.0056(4) |
O2 | y | 5 | 3 | -0.0049(5) |
O2 | z | 5 | 3 | -0.0064(5) |
O2 | x | 5 | 4 | 0.0029(3) |
O2 | y | 5 | 4 | 0.0083(5) |
O2 | z | 5 | 4 | -0.0033(5) |
O2 | x | 5 | 5 | -0.0073(4) |
O2 | y | 5 | 5 | 0.0070(6) |
O2 | z | 5 | 5 | 0.0031(6) |
O2 | x | 5 | 6 | 0 |
O2 | y | 5 | 6 | 0 |
O2 | z | 5 | 6 | 0 |
O3 | x | 6 | 1 | -0.0024(3) |
O3 | y | 6 | 1 | 0.0371(5) |
O3 | z | 6 | 1 | 0.0011(4) |
O3 | x | 6 | 2 | 0.0063(3) |
O3 | y | 6 | 2 | 0.0024(5) |
O3 | z | 6 | 2 | 0.0164(5) |
O3 | x | 6 | 3 | -0.0059(4) |
O3 | y | 6 | 3 | -0.0021(5) |
O3 | z | 6 | 3 | -0.0069(5) |
O3 | x | 6 | 4 | -0.0016(3) |
O3 | y | 6 | 4 | 0.0049(5) |
O3 | z | 6 | 4 | -0.0035(5) |
O3 | x | 6 | 5 | 0.0067(4) |
O3 | y | 6 | 5 | 0.0032(6) |
O3 | z | 6 | 5 | 0.0032(6) |
O3 | x | 6 | 6 | 0 |
O3 | y | 6 | 6 | 0 |
O3 | z | 6 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00030(6) |
La1 | U22 | 1 | 1 | 0.00024(7) |
La1 | U33 | 1 | 1 | 0.00087(9) |
La1 | U12 | 1 | 1 | 0.00018(9) |
La1 | U13 | 1 | 1 | 0.00001(6) |
La1 | U23 | 1 | 1 | 0.00012(10) |
La1 | U11 | 1 | 2 | 0.00057(7) |
La1 | U22 | 1 | 2 | 0.00078(7) |
La1 | U33 | 1 | 2 | -0.00089(10) |
La1 | U12 | 1 | 2 | -0.00010(10) |
La1 | U13 | 1 | 2 | 0.00026(15) |
La1 | U23 | 1 | 2 | 0.00024(8) |
La1 | U11 | 1 | 3 | -0.00021(9) |
La1 | U22 | 1 | 3 | 0.00073(10) |
La1 | U33 | 1 | 3 | -0.00026(13) |
La1 | U12 | 1 | 3 | -0.00011(8) |
La1 | U13 | 1 | 3 | -0.00010(9) |
La1 | U23 | 1 | 3 | -0.00062(17) |
La1 | U11 | 1 | 4 | 0 |
La1 | U22 | 1 | 4 | 0 |
La1 | U33 | 1 | 4 | 0 |
La1 | U12 | 1 | 4 | 0 |
La1 | U13 | 1 | 4 | 0 |
La1 | U23 | 1 | 4 | 0 |
Structural Formula Sum: Fe0.571 La3.429 O11.429 Ti2.858 [ Help ]
Formula weight: 827.9 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+3/4,x2+1/2,x3,x4+1/4 |
6 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
7 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
8 | x1+3/4,x2,-x3+1/2,x4+1/4 |
9 | x1+1/2,x2,x3,x4+1/2 |
10 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
11 | -x1+1/2,-x2,-x3,-x4 |
12 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8302(19) Å [ Help ]
b: 5.2737(16) Å [ Help ]
c: 5.5518(18) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.001(18) ° [ Help ]
Volume: 229.26(12) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.071429 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 250 K [ Help ]
μ: 18.905 mm-1 [ Help ]
Absorption correction type: numerical [ Help ]
Absorption correction remarks: SADABS (version2008/1) [ Help ]
Minimum transmission factor: 0.3434 [ Help ]
Maximum transmission factor: 0.7477 [ Help ]
Total nb. of reflections: 12311 [ Help ]
Nb. of observed reflections: 11385 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0625 [ Help ]
wR(obs): 0.0821 [ Help ]
R(all): 0.0677 [ Help ]
wR(all): 0.0829 [ Help ]
S(all): 3.22 [ Help ]
S(obs): 3.32 [ Help ]
Nb. of reflections: 12311 [ Help ]
Nb. of parameters: 161 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0027 [ Help ]
Δ/σ(mean): 0.0004 [ Help ]
Δρ(max): 18.95 e_Å-3 [ Help ]
Δρ(min): -4.56 e_Å-3 [ Help ]
Extinction method: none [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00026(2) | -0.01780(4) | 0.00263(4) | Uani | 0.00683(6) | 16 | 0.1429 | d | ? | ? | ? |
La2 | La | -0.00144(10) | 0.29660(8) | -0.08968(13) | Uani | 0.00742(9) | 16 | 0.0357 | d | ? | ? | ? |
La3 | La | -0.00272(10) | -0.23236(10) | 0.04847(14) | Uani | 0.01283(12) | 16 | 0.0357 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00481(19) | 8 | 0.023(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00481(19) | 8 | 0.049(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00481(19) | 16 | 0.0270(10) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00481(19) | 16 | 0.0087(10) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00481(19) | 16 | 0.0344(9) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00481(19) | 16 | 0.0013(9) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00458(19) | 8 | 0.023(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00458(19) | 8 | 0.049(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00458(19) | 16 | 0.0268(10) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00458(19) | 16 | 0.0089(10) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00458(19) | 16 | 0.0333(9) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00458(19) | 16 | 0.0024(9) | d | ? | ? | ? |
O1 | O | -0.0003(3) | 0.0068(4) | 0.5569(5) | Uani | 0.0093(5) | 16 | 0.2143 | d | ? | ? | ? |
O2 | O | 0.2251(3) | 0.2143(5) | 0.2101(4) | Uani | 0.0085(5) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7762(3) | 0.2078(4) | 0.2057(4) | Uani | 0.0081(5) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00348(10) | 0.01109(8) | 0.00590(13) | 0.00025(9) | -0.00016(12) | -0.00136(6) |
La2 | La | 0.00265(13) | 0.01445(15) | 0.00517(19) | -0.00051(18) | -0.00054(16) | -0.00186(13) |
La3 | La | 0.00273(15) | 0.0237(2) | 0.0121(3) | 0.0004(2) | -0.00048(19) | -0.00631(16) |
Ti11 | Ti | 0.0037(3) | 0.0081(2) | 0.0026(4) | -0.0026(5) | -0.0001(4) | -0.00023(19) |
Fe11 | Fe | 0.0037(3) | 0.0081(2) | 0.0026(4) | -0.0026(5) | -0.0001(4) | -0.00023(19) |
Ti12 | Ti | 0.0037(3) | 0.0081(2) | 0.0026(4) | -0.0026(5) | -0.0001(4) | -0.00023(19) |
Fe12 | Fe | 0.0037(3) | 0.0081(2) | 0.0026(4) | -0.0026(5) | -0.0001(4) | -0.00023(19) |
Ti13 | Ti | 0.0037(3) | 0.0081(2) | 0.0026(4) | -0.0026(5) | -0.0001(4) | -0.00023(19) |
Fe13 | Fe | 0.0037(3) | 0.0081(2) | 0.0026(4) | -0.0026(5) | -0.0001(4) | -0.00023(19) |
Ti21 | Ti | 0.0036(3) | 0.0077(2) | 0.0025(4) | -0.0026(5) | 0.0000(4) | 0.00059(19) |
Fe21 | Fe | 0.0036(3) | 0.0077(2) | 0.0025(4) | -0.0026(5) | 0.0000(4) | 0.00059(19) |
Ti22 | Ti | 0.0036(3) | 0.0077(2) | 0.0025(4) | -0.0026(5) | 0.0000(4) | 0.00059(19) |
Fe22 | Fe | 0.0036(3) | 0.0077(2) | 0.0025(4) | -0.0026(5) | 0.0000(4) | 0.00059(19) |
Ti23 | Ti | 0.0036(3) | 0.0077(2) | 0.0025(4) | -0.0026(5) | 0.0000(4) | 0.00059(19) |
Fe23 | Fe | 0.0036(3) | 0.0077(2) | 0.0025(4) | -0.0026(5) | 0.0000(4) | 0.00059(19) |
O1 | O | 0.0004(8) | 0.0169(8) | 0.0105(11) | 0.0013(8) | -0.0006(6) | 0.0003(7) |
O2 | O | 0.0083(10) | 0.0145(8) | 0.0028(9) | -0.0005(7) | 0.0000(7) | 0.0026(7) |
O3 | O | 0.0074(10) | 0.0138(8) | 0.0031(9) | 0.0008(7) | 0.0010(6) | 0.0026(6) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | 10 |
11 | 11 |
12 | 12 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.142857 | 0.950000 |
2 | 0.110477 | 0.035714 | 0.950000 |
3 | -0.105891 | 0.035714 | 0.950000 |
4 | 0.000000 | 0.214286 | 0.950000 |
5 | 0.000000 | 0.250000 | 0.950000 |
6 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.1429 |
La2 | 0.110477(6) | 0.0357 |
La3 | -0.105891(7) | 0.0357 |
Ti11 | 0 | 0.0714 |
Fe11 | 0 | 0.0714 |
Ti12 | 0.0536 | 0.0357 |
Fe12 | 0.0536 | 0.0357 |
Ti13 | 0.0893 | 0.0357 |
Fe13 | 0.0893 | 0.0357 |
Ti21 | 0 | 0.0714 |
Fe21 | 0 | 0.0714 |
Ti22 | 0.0536 | 0.0357 |
Fe22 | 0.0536 | 0.0357 |
Ti23 | 0.0893 | 0.0357 |
Fe23 | 0.0893 | 0.0357 |
O1 | 0 | 0.2143 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Ti11x7 | Ti11 | x | 7 |
Ti11y7 | Ti11 | y | 7 |
Ti11z7 | Ti11 | z | 7 |
Ti11x8 | Ti11 | x | 8 |
Ti11y8 | Ti11 | y | 8 |
Ti11z8 | Ti11 | z | 8 |
Ti11x9 | Ti11 | x | 9 |
Ti11y9 | Ti11 | y | 9 |
Ti11z9 | Ti11 | z | 9 |
Ti11x10 | Ti11 | x | 10 |
Ti11y10 | Ti11 | y | 10 |
Ti11z10 | Ti11 | z | 10 |
Ti11x11 | Ti11 | x | 11 |
Ti11y11 | Ti11 | y | 11 |
Ti11z11 | Ti11 | z | 11 |
Ti11x12 | Ti11 | x | 12 |
Ti11y12 | Ti11 | y | 12 |
Ti11z12 | Ti11 | z | 12 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Fe11x7 | Fe11 | x | 7 |
Fe11y7 | Fe11 | y | 7 |
Fe11z7 | Fe11 | z | 7 |
Fe11x8 | Fe11 | x | 8 |
Fe11y8 | Fe11 | y | 8 |
Fe11z8 | Fe11 | z | 8 |
Fe11x9 | Fe11 | x | 9 |
Fe11y9 | Fe11 | y | 9 |
Fe11z9 | Fe11 | z | 9 |
Fe11x10 | Fe11 | x | 10 |
Fe11y10 | Fe11 | y | 10 |
Fe11z10 | Fe11 | z | 10 |
Fe11x11 | Fe11 | x | 11 |
Fe11y11 | Fe11 | y | 11 |
Fe11z11 | Fe11 | z | 11 |
Fe11x12 | Fe11 | x | 12 |
Fe11y12 | Fe11 | y | 12 |
Fe11z12 | Fe11 | z | 12 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Ti12x7 | Ti12 | x | 7 |
Ti12y7 | Ti12 | y | 7 |
Ti12z7 | Ti12 | z | 7 |
Ti12x8 | Ti12 | x | 8 |
Ti12y8 | Ti12 | y | 8 |
Ti12z8 | Ti12 | z | 8 |
Ti12x9 | Ti12 | x | 9 |
Ti12y9 | Ti12 | y | 9 |
Ti12z9 | Ti12 | z | 9 |
Ti12x10 | Ti12 | x | 10 |
Ti12y10 | Ti12 | y | 10 |
Ti12z10 | Ti12 | z | 10 |
Ti12x11 | Ti12 | x | 11 |
Ti12y11 | Ti12 | y | 11 |
Ti12z11 | Ti12 | z | 11 |
Ti12x12 | Ti12 | x | 12 |
Ti12y12 | Ti12 | y | 12 |
Ti12z12 | Ti12 | z | 12 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Fe12x7 | Fe12 | x | 7 |
Fe12y7 | Fe12 | y | 7 |
Fe12z7 | Fe12 | z | 7 |
Fe12x8 | Fe12 | x | 8 |
Fe12y8 | Fe12 | y | 8 |
Fe12z8 | Fe12 | z | 8 |
Fe12x9 | Fe12 | x | 9 |
Fe12y9 | Fe12 | y | 9 |
Fe12z9 | Fe12 | z | 9 |
Fe12x10 | Fe12 | x | 10 |
Fe12y10 | Fe12 | y | 10 |
Fe12z10 | Fe12 | z | 10 |
Fe12x11 | Fe12 | x | 11 |
Fe12y11 | Fe12 | y | 11 |
Fe12z11 | Fe12 | z | 11 |
Fe12x12 | Fe12 | x | 12 |
Fe12y12 | Fe12 | y | 12 |
Fe12z12 | Fe12 | z | 12 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti13x7 | Ti13 | x | 7 |
Ti13y7 | Ti13 | y | 7 |
Ti13z7 | Ti13 | z | 7 |
Ti13x8 | Ti13 | x | 8 |
Ti13y8 | Ti13 | y | 8 |
Ti13z8 | Ti13 | z | 8 |
Ti13x9 | Ti13 | x | 9 |
Ti13y9 | Ti13 | y | 9 |
Ti13z9 | Ti13 | z | 9 |
Ti13x10 | Ti13 | x | 10 |
Ti13y10 | Ti13 | y | 10 |
Ti13z10 | Ti13 | z | 10 |
Ti13x11 | Ti13 | x | 11 |
Ti13y11 | Ti13 | y | 11 |
Ti13z11 | Ti13 | z | 11 |
Ti13x12 | Ti13 | x | 12 |
Ti13y12 | Ti13 | y | 12 |
Ti13z12 | Ti13 | z | 12 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Fe13x7 | Fe13 | x | 7 |
Fe13y7 | Fe13 | y | 7 |
Fe13z7 | Fe13 | z | 7 |
Fe13x8 | Fe13 | x | 8 |
Fe13y8 | Fe13 | y | 8 |
Fe13z8 | Fe13 | z | 8 |
Fe13x9 | Fe13 | x | 9 |
Fe13y9 | Fe13 | y | 9 |
Fe13z9 | Fe13 | z | 9 |
Fe13x10 | Fe13 | x | 10 |
Fe13y10 | Fe13 | y | 10 |
Fe13z10 | Fe13 | z | 10 |
Fe13x11 | Fe13 | x | 11 |
Fe13y11 | Fe13 | y | 11 |
Fe13z11 | Fe13 | z | 11 |
Fe13x12 | Fe13 | x | 12 |
Fe13y12 | Fe13 | y | 12 |
Fe13z12 | Fe13 | z | 12 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Ti21x7 | Ti21 | x | 7 |
Ti21y7 | Ti21 | y | 7 |
Ti21z7 | Ti21 | z | 7 |
Ti21x8 | Ti21 | x | 8 |
Ti21y8 | Ti21 | y | 8 |
Ti21z8 | Ti21 | z | 8 |
Ti21x9 | Ti21 | x | 9 |
Ti21y9 | Ti21 | y | 9 |
Ti21z9 | Ti21 | z | 9 |
Ti21x10 | Ti21 | x | 10 |
Ti21y10 | Ti21 | y | 10 |
Ti21z10 | Ti21 | z | 10 |
Ti21x11 | Ti21 | x | 11 |
Ti21y11 | Ti21 | y | 11 |
Ti21z11 | Ti21 | z | 11 |
Ti21x12 | Ti21 | x | 12 |
Ti21y12 | Ti21 | y | 12 |
Ti21z12 | Ti21 | z | 12 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Fe21x7 | Fe21 | x | 7 |
Fe21y7 | Fe21 | y | 7 |
Fe21z7 | Fe21 | z | 7 |
Fe21x8 | Fe21 | x | 8 |
Fe21y8 | Fe21 | y | 8 |
Fe21z8 | Fe21 | z | 8 |
Fe21x9 | Fe21 | x | 9 |
Fe21y9 | Fe21 | y | 9 |
Fe21z9 | Fe21 | z | 9 |
Fe21x10 | Fe21 | x | 10 |
Fe21y10 | Fe21 | y | 10 |
Fe21z10 | Fe21 | z | 10 |
Fe21x11 | Fe21 | x | 11 |
Fe21y11 | Fe21 | y | 11 |
Fe21z11 | Fe21 | z | 11 |
Fe21x12 | Fe21 | x | 12 |
Fe21y12 | Fe21 | y | 12 |
Fe21z12 | Fe21 | z | 12 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Ti22x7 | Ti22 | x | 7 |
Ti22y7 | Ti22 | y | 7 |
Ti22z7 | Ti22 | z | 7 |
Ti22x8 | Ti22 | x | 8 |
Ti22y8 | Ti22 | y | 8 |
Ti22z8 | Ti22 | z | 8 |
Ti22x9 | Ti22 | x | 9 |
Ti22y9 | Ti22 | y | 9 |
Ti22z9 | Ti22 | z | 9 |
Ti22x10 | Ti22 | x | 10 |
Ti22y10 | Ti22 | y | 10 |
Ti22z10 | Ti22 | z | 10 |
Ti22x11 | Ti22 | x | 11 |
Ti22y11 | Ti22 | y | 11 |
Ti22z11 | Ti22 | z | 11 |
Ti22x12 | Ti22 | x | 12 |
Ti22y12 | Ti22 | y | 12 |
Ti22z12 | Ti22 | z | 12 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Fe22x7 | Fe22 | x | 7 |
Fe22y7 | Fe22 | y | 7 |
Fe22z7 | Fe22 | z | 7 |
Fe22x8 | Fe22 | x | 8 |
Fe22y8 | Fe22 | y | 8 |
Fe22z8 | Fe22 | z | 8 |
Fe22x9 | Fe22 | x | 9 |
Fe22y9 | Fe22 | y | 9 |
Fe22z9 | Fe22 | z | 9 |
Fe22x10 | Fe22 | x | 10 |
Fe22y10 | Fe22 | y | 10 |
Fe22z10 | Fe22 | z | 10 |
Fe22x11 | Fe22 | x | 11 |
Fe22y11 | Fe22 | y | 11 |
Fe22z11 | Fe22 | z | 11 |
Fe22x12 | Fe22 | x | 12 |
Fe22y12 | Fe22 | y | 12 |
Fe22z12 | Fe22 | z | 12 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Ti23x7 | Ti23 | x | 7 |
Ti23y7 | Ti23 | y | 7 |
Ti23z7 | Ti23 | z | 7 |
Ti23x8 | Ti23 | x | 8 |
Ti23y8 | Ti23 | y | 8 |
Ti23z8 | Ti23 | z | 8 |
Ti23x9 | Ti23 | x | 9 |
Ti23y9 | Ti23 | y | 9 |
Ti23z9 | Ti23 | z | 9 |
Ti23x10 | Ti23 | x | 10 |
Ti23y10 | Ti23 | y | 10 |
Ti23z10 | Ti23 | z | 10 |
Ti23x11 | Ti23 | x | 11 |
Ti23y11 | Ti23 | y | 11 |
Ti23z11 | Ti23 | z | 11 |
Ti23x12 | Ti23 | x | 12 |
Ti23y12 | Ti23 | y | 12 |
Ti23z12 | Ti23 | z | 12 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Fe23x7 | Fe23 | x | 7 |
Fe23y7 | Fe23 | y | 7 |
Fe23z7 | Fe23 | z | 7 |
Fe23x8 | Fe23 | x | 8 |
Fe23y8 | Fe23 | y | 8 |
Fe23z8 | Fe23 | z | 8 |
Fe23x9 | Fe23 | x | 9 |
Fe23y9 | Fe23 | y | 9 |
Fe23z9 | Fe23 | z | 9 |
Fe23x10 | Fe23 | x | 10 |
Fe23y10 | Fe23 | y | 10 |
Fe23z10 | Fe23 | z | 10 |
Fe23x11 | Fe23 | x | 11 |
Fe23y11 | Fe23 | y | 11 |
Fe23z11 | Fe23 | z | 11 |
Fe23x12 | Fe23 | x | 12 |
Fe23y12 | Fe23 | y | 12 |
Fe23z12 | Fe23 | z | 12 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0072(7) |
Ti11y1 | 0 | 0.1430(4) |
Ti11z1 | 0 | -0.0599(5) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0006(3) |
Ti11y6 | 0 | 0.01101(19) |
Ti11z6 | 0 | 0.0219(2) |
Ti11x7 | 0 | 0 |
Ti11y7 | 0 | 0 |
Ti11z7 | 0 | 0 |
Ti11x8 | 0 | 0 |
Ti11y8 | 0 | 0 |
Ti11z8 | 0 | 0 |
Ti11x9 | 0 | 0 |
Ti11y9 | 0 | 0 |
Ti11z9 | 0 | 0 |
Ti11x10 | 0 | 0 |
Ti11y10 | 0 | 0 |
Ti11z10 | 0 | 0 |
Ti11x11 | 0 | 0 |
Ti11y11 | 0 | 0 |
Ti11z11 | 0 | 0 |
Ti11x12 | 0 | 0.0011(2) |
Ti11y12 | 0 | -0.00819(15) |
Ti11z12 | 0 | -0.0119(3) |
Fe11x1 | 0 | -0.0072(7) |
Fe11y1 | 0 | 0.1430(4) |
Fe11z1 | 0 | -0.0599(5) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0006(3) |
Fe11y6 | 0 | 0.01101(19) |
Fe11z6 | 0 | 0.0219(2) |
Fe11x7 | 0 | 0 |
Fe11y7 | 0 | 0 |
Fe11z7 | 0 | 0 |
Fe11x8 | 0 | 0 |
Fe11y8 | 0 | 0 |
Fe11z8 | 0 | 0 |
Fe11x9 | 0 | 0 |
Fe11y9 | 0 | 0 |
Fe11z9 | 0 | 0 |
Fe11x10 | 0 | 0 |
Fe11y10 | 0 | 0 |
Fe11z10 | 0 | 0 |
Fe11x11 | 0 | 0 |
Fe11y11 | 0 | 0 |
Fe11z11 | 0 | 0 |
Fe11x12 | 0 | 0.0011(2) |
Fe11y12 | 0 | -0.00819(15) |
Fe11z12 | 0 | -0.0119(3) |
Ti12x1 | 0 | -0.0072(7) |
Ti12y1 | 0 | 0.1430(4) |
Ti12z1 | 0 | -0.0599(5) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0006(3) |
Ti12y6 | 0 | 0.01101(19) |
Ti12z6 | 0 | 0.0219(2) |
Ti12x7 | 0 | 0 |
Ti12y7 | 0 | 0 |
Ti12z7 | 0 | 0 |
Ti12x8 | 0 | 0 |
Ti12y8 | 0 | 0 |
Ti12z8 | 0 | 0 |
Ti12x9 | 0 | 0 |
Ti12y9 | 0 | 0 |
Ti12z9 | 0 | 0 |
Ti12x10 | 0 | 0 |
Ti12y10 | 0 | 0 |
Ti12z10 | 0 | 0 |
Ti12x11 | 0 | 0 |
Ti12y11 | 0 | 0 |
Ti12z11 | 0 | 0 |
Ti12x12 | 0 | 0.0011(2) |
Ti12y12 | 0 | -0.00819(15) |
Ti12z12 | 0 | -0.0119(3) |
Fe12x1 | 0 | -0.0072(7) |
Fe12y1 | 0 | 0.1430(4) |
Fe12z1 | 0 | -0.0599(5) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0006(3) |
Fe12y6 | 0 | 0.01101(19) |
Fe12z6 | 0 | 0.0219(2) |
Fe12x7 | 0 | 0 |
Fe12y7 | 0 | 0 |
Fe12z7 | 0 | 0 |
Fe12x8 | 0 | 0 |
Fe12y8 | 0 | 0 |
Fe12z8 | 0 | 0 |
Fe12x9 | 0 | 0 |
Fe12y9 | 0 | 0 |
Fe12z9 | 0 | 0 |
Fe12x10 | 0 | 0 |
Fe12y10 | 0 | 0 |
Fe12z10 | 0 | 0 |
Fe12x11 | 0 | 0 |
Fe12y11 | 0 | 0 |
Fe12z11 | 0 | 0 |
Fe12x12 | 0 | 0.0011(2) |
Fe12y12 | 0 | -0.00819(15) |
Fe12z12 | 0 | -0.0119(3) |
Ti13x1 | 0 | -0.0072(7) |
Ti13y1 | 0 | 0.1430(4) |
Ti13z1 | 0 | -0.0599(5) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0006(3) |
Ti13y6 | 0 | 0.01101(19) |
Ti13z6 | 0 | 0.0219(2) |
Ti13x7 | 0 | 0 |
Ti13y7 | 0 | 0 |
Ti13z7 | 0 | 0 |
Ti13x8 | 0 | 0 |
Ti13y8 | 0 | 0 |
Ti13z8 | 0 | 0 |
Ti13x9 | 0 | 0 |
Ti13y9 | 0 | 0 |
Ti13z9 | 0 | 0 |
Ti13x10 | 0 | 0 |
Ti13y10 | 0 | 0 |
Ti13z10 | 0 | 0 |
Ti13x11 | 0 | 0 |
Ti13y11 | 0 | 0 |
Ti13z11 | 0 | 0 |
Ti13x12 | 0 | 0.0011(2) |
Ti13y12 | 0 | -0.00819(15) |
Ti13z12 | 0 | -0.0119(3) |
Fe13x1 | 0 | -0.0072(7) |
Fe13y1 | 0 | 0.1430(4) |
Fe13z1 | 0 | -0.0599(5) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0006(3) |
Fe13y6 | 0 | 0.01101(19) |
Fe13z6 | 0 | 0.0219(2) |
Fe13x7 | 0 | 0 |
Fe13y7 | 0 | 0 |
Fe13z7 | 0 | 0 |
Fe13x8 | 0 | 0 |
Fe13y8 | 0 | 0 |
Fe13z8 | 0 | 0 |
Fe13x9 | 0 | 0 |
Fe13y9 | 0 | 0 |
Fe13z9 | 0 | 0 |
Fe13x10 | 0 | 0 |
Fe13y10 | 0 | 0 |
Fe13z10 | 0 | 0 |
Fe13x11 | 0 | 0 |
Fe13y11 | 0 | 0 |
Fe13z11 | 0 | 0 |
Fe13x12 | 0 | 0.0011(2) |
Fe13y12 | 0 | -0.00819(15) |
Fe13z12 | 0 | -0.0119(3) |
Ti21x1 | 0 | -0.0019(7) |
Ti21y1 | 0 | 0.1560(4) |
Ti21z1 | 0 | -0.0638(5) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0016(3) |
Ti21y6 | 0 | 0.00991(19) |
Ti21z6 | 0 | 0.0221(2) |
Ti21x7 | 0 | 0 |
Ti21y7 | 0 | 0 |
Ti21z7 | 0 | 0 |
Ti21x8 | 0 | 0 |
Ti21y8 | 0 | 0 |
Ti21z8 | 0 | 0 |
Ti21x9 | 0 | 0 |
Ti21y9 | 0 | 0 |
Ti21z9 | 0 | 0 |
Ti21x10 | 0 | 0 |
Ti21y10 | 0 | 0 |
Ti21z10 | 0 | 0 |
Ti21x11 | 0 | 0 |
Ti21y11 | 0 | 0 |
Ti21z11 | 0 | 0 |
Ti21x12 | 0 | 0.0029(2) |
Ti21y12 | 0 | -0.00883(14) |
Ti21z12 | 0 | -0.0116(3) |
Fe21x1 | 0 | -0.0019(7) |
Fe21y1 | 0 | 0.1560(4) |
Fe21z1 | 0 | -0.0638(5) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0016(3) |
Fe21y6 | 0 | 0.00991(19) |
Fe21z6 | 0 | 0.0221(2) |
Fe21x7 | 0 | 0 |
Fe21y7 | 0 | 0 |
Fe21z7 | 0 | 0 |
Fe21x8 | 0 | 0 |
Fe21y8 | 0 | 0 |
Fe21z8 | 0 | 0 |
Fe21x9 | 0 | 0 |
Fe21y9 | 0 | 0 |
Fe21z9 | 0 | 0 |
Fe21x10 | 0 | 0 |
Fe21y10 | 0 | 0 |
Fe21z10 | 0 | 0 |
Fe21x11 | 0 | 0 |
Fe21y11 | 0 | 0 |
Fe21z11 | 0 | 0 |
Fe21x12 | 0 | 0.0029(2) |
Fe21y12 | 0 | -0.00883(14) |
Fe21z12 | 0 | -0.0116(3) |
Ti22x1 | 0 | -0.0019(7) |
Ti22y1 | 0 | 0.1560(4) |
Ti22z1 | 0 | -0.0638(5) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0016(3) |
Ti22y6 | 0 | 0.00991(19) |
Ti22z6 | 0 | 0.0221(2) |
Ti22x7 | 0 | 0 |
Ti22y7 | 0 | 0 |
Ti22z7 | 0 | 0 |
Ti22x8 | 0 | 0 |
Ti22y8 | 0 | 0 |
Ti22z8 | 0 | 0 |
Ti22x9 | 0 | 0 |
Ti22y9 | 0 | 0 |
Ti22z9 | 0 | 0 |
Ti22x10 | 0 | 0 |
Ti22y10 | 0 | 0 |
Ti22z10 | 0 | 0 |
Ti22x11 | 0 | 0 |
Ti22y11 | 0 | 0 |
Ti22z11 | 0 | 0 |
Ti22x12 | 0 | 0.0029(2) |
Ti22y12 | 0 | -0.00883(14) |
Ti22z12 | 0 | -0.0116(3) |
Fe22x1 | 0 | -0.0019(7) |
Fe22y1 | 0 | 0.1560(4) |
Fe22z1 | 0 | -0.0638(5) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0016(3) |
Fe22y6 | 0 | 0.00991(19) |
Fe22z6 | 0 | 0.0221(2) |
Fe22x7 | 0 | 0 |
Fe22y7 | 0 | 0 |
Fe22z7 | 0 | 0 |
Fe22x8 | 0 | 0 |
Fe22y8 | 0 | 0 |
Fe22z8 | 0 | 0 |
Fe22x9 | 0 | 0 |
Fe22y9 | 0 | 0 |
Fe22z9 | 0 | 0 |
Fe22x10 | 0 | 0 |
Fe22y10 | 0 | 0 |
Fe22z10 | 0 | 0 |
Fe22x11 | 0 | 0 |
Fe22y11 | 0 | 0 |
Fe22z11 | 0 | 0 |
Fe22x12 | 0 | 0.0029(2) |
Fe22y12 | 0 | -0.00883(14) |
Fe22z12 | 0 | -0.0116(3) |
Ti23x1 | 0 | -0.0019(7) |
Ti23y1 | 0 | 0.1560(4) |
Ti23z1 | 0 | -0.0638(5) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0016(3) |
Ti23y6 | 0 | 0.00991(19) |
Ti23z6 | 0 | 0.0221(2) |
Ti23x7 | 0 | 0 |
Ti23y7 | 0 | 0 |
Ti23z7 | 0 | 0 |
Ti23x8 | 0 | 0 |
Ti23y8 | 0 | 0 |
Ti23z8 | 0 | 0 |
Ti23x9 | 0 | 0 |
Ti23y9 | 0 | 0 |
Ti23z9 | 0 | 0 |
Ti23x10 | 0 | 0 |
Ti23y10 | 0 | 0 |
Ti23z10 | 0 | 0 |
Ti23x11 | 0 | 0 |
Ti23y11 | 0 | 0 |
Ti23z11 | 0 | 0 |
Ti23x12 | 0 | 0.0029(2) |
Ti23y12 | 0 | -0.00883(14) |
Ti23z12 | 0 | -0.0116(3) |
Fe23x1 | 0 | -0.0019(7) |
Fe23y1 | 0 | 0.1560(4) |
Fe23z1 | 0 | -0.0638(5) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0016(3) |
Fe23y6 | 0 | 0.00991(19) |
Fe23z6 | 0 | 0.0221(2) |
Fe23x7 | 0 | 0 |
Fe23y7 | 0 | 0 |
Fe23z7 | 0 | 0 |
Fe23x8 | 0 | 0 |
Fe23y8 | 0 | 0 |
Fe23z8 | 0 | 0 |
Fe23x9 | 0 | 0 |
Fe23y9 | 0 | 0 |
Fe23z9 | 0 | 0 |
Fe23x10 | 0 | 0 |
Fe23y10 | 0 | 0 |
Fe23z10 | 0 | 0 |
Fe23x11 | 0 | 0 |
Fe23y11 | 0 | 0 |
Fe23z11 | 0 | 0 |
Fe23x12 | 0 | 0.0029(2) |
Fe23y12 | 0 | -0.00883(14) |
Fe23z12 | 0 | -0.0116(3) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | 0.00013(9) |
La1 | y | 1 | 1 | 0.03795(4) |
La1 | z | 1 | 1 | 0.00051(5) |
La1 | x | 1 | 2 | 0.00017(3) |
La1 | y | 1 | 2 | -0.00064(4) |
La1 | z | 1 | 2 | 0.00052(4) |
O1 | x | 4 | 1 | -0.0004(5) |
O1 | y | 4 | 1 | 0.0211(6) |
O1 | z | 4 | 1 | -0.0099(5) |
O1 | x | 4 | 2 | 0.0002(3) |
O1 | y | 4 | 2 | 0.0085(5) |
O1 | z | 4 | 2 | 0.0048(5) |
O1 | x | 4 | 3 | 0.0011(6) |
O1 | y | 4 | 3 | -0.0045(8) |
O1 | z | 4 | 3 | 0.0056(8) |
O1 | x | 4 | 4 | 0.0005(4) |
O1 | y | 4 | 4 | -0.0059(5) |
O1 | z | 4 | 4 | -0.0002(6) |
O1 | x | 4 | 5 | -0.0011(8) |
O1 | y | 4 | 5 | 0.0087(10) |
O1 | z | 4 | 5 | 0.0030(10) |
O1 | x | 4 | 6 | 0 |
O1 | y | 4 | 6 | 0 |
O1 | z | 4 | 6 | 0 |
O2 | x | 5 | 1 | 0.0016(3) |
O2 | y | 5 | 1 | 0.0342(5) |
O2 | z | 5 | 1 | 0.0017(4) |
O2 | x | 5 | 2 | -0.0084(3) |
O2 | y | 5 | 2 | -0.0040(4) |
O2 | z | 5 | 2 | 0.0142(5) |
O2 | x | 5 | 3 | 0.0057(4) |
O2 | y | 5 | 3 | -0.0054(5) |
O2 | z | 5 | 3 | -0.0065(5) |
O2 | x | 5 | 4 | 0.0030(3) |
O2 | y | 5 | 4 | 0.0081(5) |
O2 | z | 5 | 4 | -0.0036(5) |
O2 | x | 5 | 5 | -0.0074(4) |
O2 | y | 5 | 5 | 0.0067(6) |
O2 | z | 5 | 5 | 0.0032(6) |
O2 | x | 5 | 6 | 0 |
O2 | y | 5 | 6 | 0 |
O2 | z | 5 | 6 | 0 |
O3 | x | 6 | 1 | -0.0020(3) |
O3 | y | 6 | 1 | 0.0369(4) |
O3 | z | 6 | 1 | 0.0012(4) |
O3 | x | 6 | 2 | 0.0063(3) |
O3 | y | 6 | 2 | 0.0024(4) |
O3 | z | 6 | 2 | 0.0163(5) |
O3 | x | 6 | 3 | -0.0060(4) |
O3 | y | 6 | 3 | -0.0018(5) |
O3 | z | 6 | 3 | -0.0067(5) |
O3 | x | 6 | 4 | -0.0014(3) |
O3 | y | 6 | 4 | 0.0052(5) |
O3 | z | 6 | 4 | -0.0033(5) |
O3 | x | 6 | 5 | 0.0065(4) |
O3 | y | 6 | 5 | 0.0030(6) |
O3 | z | 6 | 5 | 0.0029(6) |
O3 | x | 6 | 6 | 0 |
O3 | y | 6 | 6 | 0 |
O3 | z | 6 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00032(6) |
La1 | U22 | 1 | 1 | 0.00038(6) |
La1 | U33 | 1 | 1 | 0.00082(9) |
La1 | U12 | 1 | 1 | 0.00018(9) |
La1 | U13 | 1 | 1 | 0.00005(6) |
La1 | U23 | 1 | 1 | -0.00003(9) |
La1 | U11 | 1 | 2 | 0.00063(7) |
La1 | U22 | 1 | 2 | 0.00075(7) |
La1 | U33 | 1 | 2 | -0.00085(10) |
La1 | U12 | 1 | 2 | -0.00009(10) |
La1 | U13 | 1 | 2 | 0.00027(15) |
La1 | U23 | 1 | 2 | 0.00027(8) |
La1 | U11 | 1 | 3 | -0.00021(9) |
La1 | U22 | 1 | 3 | 0.00078(9) |
La1 | U33 | 1 | 3 | -0.00017(13) |
La1 | U12 | 1 | 3 | -0.00023(8) |
La1 | U13 | 1 | 3 | 0.00000(9) |
La1 | U23 | 1 | 3 | -0.00044(17) |
La1 | U11 | 1 | 4 | 0 |
La1 | U22 | 1 | 4 | 0 |
La1 | U33 | 1 | 4 | 0 |
La1 | U12 | 1 | 4 | 0 |
La1 | U13 | 1 | 4 | 0 |
La1 | U23 | 1 | 4 | 0 |
Structural Formula Sum: Fe0.571 La3.429 O11.429 Ti2.858 [ Help ]
Formula weight: 827.9 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+3/4,x2+1/2,x3,x4+1/4 |
6 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
7 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
8 | x1+3/4,x2,-x3+1/2,x4+1/4 |
9 | x1+1/2,x2,x3,x4+1/2 |
10 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
11 | -x1+1/2,-x2,-x3,-x4 |
12 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8367(18) Å [ Help ]
b: 5.2775(14) Å [ Help ]
c: 5.5561(17) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 90.044(17) ° [ Help ]
Volume: 229.79(11) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.071429 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 295 K [ Help ]
μ: 18.861 mm-1 [ Help ]
Absorption correction type: numerical [ Help ]
Absorption correction remarks: SADABS (version2008/1) [ Help ]
Minimum transmission factor: 0.3670 [ Help ]
Maximum transmission factor: 0.7477 [ Help ]
Total nb. of reflections: 12067 [ Help ]
Nb. of observed reflections: 11548 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0657 [ Help ]
wR(obs): 0.0893 [ Help ]
R(all): 0.0684 [ Help ]
wR(all): 0.0899 [ Help ]
S(all): 3.23 [ Help ]
S(obs): 3.28 [ Help ]
Nb. of reflections: 12067 [ Help ]
Nb. of parameters: 161 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0026 [ Help ]
Δ/σ(mean): 0.0005 [ Help ]
Δρ(max): 1.31 e_Å-3 [ Help ]
Δρ(min): -1.11 e_Å-3 [ Help ]
Extinction method: none [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00027(3) | -0.01761(4) | 0.00255(3) | Uani | 0.00732(7) | 16 | 0.1429 | d | ? | ? | ? |
La2 | La | -0.00161(10) | 0.29626(8) | -0.08993(14) | Uani | 0.00787(9) | 16 | 0.0357 | d | ? | ? | ? |
La3 | La | -0.00264(11) | -0.23319(11) | 0.04934(15) | Uani | 0.01355(12) | 16 | 0.0357 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0056(2) | 8 | 0.019(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0056(2) | 8 | 0.052(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0056(2) | 16 | 0.0277(10) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0056(2) | 16 | 0.0080(10) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.0056(2) | 16 | 0.0347(9) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.0056(2) | 16 | 0.0010(9) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 8 | 0.022(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 8 | 0.049(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0277(10) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0080(10) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0342(9) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.0051(2) | 16 | 0.0016(9) | d | ? | ? | ? |
O1 | O | -0.0005(3) | 0.0065(4) | 0.5566(5) | Uani | 0.0088(5) | 16 | 0.2143 | d | ? | ? | ? |
O2 | O | 0.2247(3) | 0.2140(4) | 0.2096(4) | Uani | 0.0092(5) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7764(3) | 0.2082(5) | 0.2057(4) | Uani | 0.0091(5) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00440(13) | 0.01181(9) | 0.00576(14) | 0.00020(11) | 0.00021(11) | -0.00143(6) |
La2 | La | 0.00321(15) | 0.01555(15) | 0.00487(18) | -0.00053(19) | -0.00093(17) | -0.00194(13) |
La3 | La | 0.00360(16) | 0.0260(2) | 0.0111(3) | -0.0001(2) | -0.0006(2) | -0.00637(17) |
Ti11 | Ti | 0.0048(4) | 0.0091(3) | 0.0028(4) | -0.0034(5) | -0.0028(4) | 0.00013(19) |
Fe11 | Fe | 0.0048(4) | 0.0091(3) | 0.0028(4) | -0.0034(5) | -0.0028(4) | 0.00013(19) |
Ti12 | Ti | 0.0048(4) | 0.0091(3) | 0.0028(4) | -0.0034(5) | -0.0028(4) | 0.00013(19) |
Fe12 | Fe | 0.0048(4) | 0.0091(3) | 0.0028(4) | -0.0034(5) | -0.0028(4) | 0.00013(19) |
Ti13 | Ti | 0.0048(4) | 0.0091(3) | 0.0028(4) | -0.0034(5) | -0.0028(4) | 0.00013(19) |
Fe13 | Fe | 0.0048(4) | 0.0091(3) | 0.0028(4) | -0.0034(5) | -0.0028(4) | 0.00013(19) |
Ti21 | Ti | 0.0047(4) | 0.0083(3) | 0.0022(4) | -0.0036(5) | -0.0025(4) | 0.00040(19) |
Fe21 | Fe | 0.0047(4) | 0.0083(3) | 0.0022(4) | -0.0036(5) | -0.0025(4) | 0.00040(19) |
Ti22 | Ti | 0.0047(4) | 0.0083(3) | 0.0022(4) | -0.0036(5) | -0.0025(4) | 0.00040(19) |
Fe22 | Fe | 0.0047(4) | 0.0083(3) | 0.0022(4) | -0.0036(5) | -0.0025(4) | 0.00040(19) |
Ti23 | Ti | 0.0047(4) | 0.0083(3) | 0.0022(4) | -0.0036(5) | -0.0025(4) | 0.00040(19) |
Fe23 | Fe | 0.0047(4) | 0.0083(3) | 0.0022(4) | -0.0036(5) | -0.0025(4) | 0.00040(19) |
O1 | O | 0.0003(9) | 0.0173(9) | 0.0089(11) | 0.0014(8) | -0.0004(6) | -0.0006(7) |
O2 | O | 0.0097(11) | 0.0133(8) | 0.0044(9) | -0.0016(7) | -0.0009(7) | 0.0032(7) |
O3 | O | 0.0063(10) | 0.0147(8) | 0.0064(9) | -0.0007(7) | 0.0016(7) | 0.0013(7) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | 10 |
11 | 11 |
12 | 12 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.142857 | 0.950000 |
2 | 0.110453 | 0.035714 | 0.950000 |
3 | -0.105949 | 0.035714 | 0.950000 |
4 | 0.000000 | 0.214286 | 0.950000 |
5 | 0.000000 | 0.250000 | 0.950000 |
6 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.1429 |
La2 | 0.110453(6) | 0.0357 |
La3 | -0.105949(8) | 0.0357 |
Ti11 | 0 | 0.0714 |
Fe11 | 0 | 0.0714 |
Ti12 | 0.0536 | 0.0357 |
Fe12 | 0.0536 | 0.0357 |
Ti13 | 0.0893 | 0.0357 |
Fe13 | 0.0893 | 0.0357 |
Ti21 | 0 | 0.0714 |
Fe21 | 0 | 0.0714 |
Ti22 | 0.0536 | 0.0357 |
Fe22 | 0.0536 | 0.0357 |
Ti23 | 0.0893 | 0.0357 |
Fe23 | 0.0893 | 0.0357 |
O1 | 0 | 0.2143 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Ti11x7 | Ti11 | x | 7 |
Ti11y7 | Ti11 | y | 7 |
Ti11z7 | Ti11 | z | 7 |
Ti11x8 | Ti11 | x | 8 |
Ti11y8 | Ti11 | y | 8 |
Ti11z8 | Ti11 | z | 8 |
Ti11x9 | Ti11 | x | 9 |
Ti11y9 | Ti11 | y | 9 |
Ti11z9 | Ti11 | z | 9 |
Ti11x10 | Ti11 | x | 10 |
Ti11y10 | Ti11 | y | 10 |
Ti11z10 | Ti11 | z | 10 |
Ti11x11 | Ti11 | x | 11 |
Ti11y11 | Ti11 | y | 11 |
Ti11z11 | Ti11 | z | 11 |
Ti11x12 | Ti11 | x | 12 |
Ti11y12 | Ti11 | y | 12 |
Ti11z12 | Ti11 | z | 12 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Fe11x7 | Fe11 | x | 7 |
Fe11y7 | Fe11 | y | 7 |
Fe11z7 | Fe11 | z | 7 |
Fe11x8 | Fe11 | x | 8 |
Fe11y8 | Fe11 | y | 8 |
Fe11z8 | Fe11 | z | 8 |
Fe11x9 | Fe11 | x | 9 |
Fe11y9 | Fe11 | y | 9 |
Fe11z9 | Fe11 | z | 9 |
Fe11x10 | Fe11 | x | 10 |
Fe11y10 | Fe11 | y | 10 |
Fe11z10 | Fe11 | z | 10 |
Fe11x11 | Fe11 | x | 11 |
Fe11y11 | Fe11 | y | 11 |
Fe11z11 | Fe11 | z | 11 |
Fe11x12 | Fe11 | x | 12 |
Fe11y12 | Fe11 | y | 12 |
Fe11z12 | Fe11 | z | 12 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Ti12x7 | Ti12 | x | 7 |
Ti12y7 | Ti12 | y | 7 |
Ti12z7 | Ti12 | z | 7 |
Ti12x8 | Ti12 | x | 8 |
Ti12y8 | Ti12 | y | 8 |
Ti12z8 | Ti12 | z | 8 |
Ti12x9 | Ti12 | x | 9 |
Ti12y9 | Ti12 | y | 9 |
Ti12z9 | Ti12 | z | 9 |
Ti12x10 | Ti12 | x | 10 |
Ti12y10 | Ti12 | y | 10 |
Ti12z10 | Ti12 | z | 10 |
Ti12x11 | Ti12 | x | 11 |
Ti12y11 | Ti12 | y | 11 |
Ti12z11 | Ti12 | z | 11 |
Ti12x12 | Ti12 | x | 12 |
Ti12y12 | Ti12 | y | 12 |
Ti12z12 | Ti12 | z | 12 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Fe12x7 | Fe12 | x | 7 |
Fe12y7 | Fe12 | y | 7 |
Fe12z7 | Fe12 | z | 7 |
Fe12x8 | Fe12 | x | 8 |
Fe12y8 | Fe12 | y | 8 |
Fe12z8 | Fe12 | z | 8 |
Fe12x9 | Fe12 | x | 9 |
Fe12y9 | Fe12 | y | 9 |
Fe12z9 | Fe12 | z | 9 |
Fe12x10 | Fe12 | x | 10 |
Fe12y10 | Fe12 | y | 10 |
Fe12z10 | Fe12 | z | 10 |
Fe12x11 | Fe12 | x | 11 |
Fe12y11 | Fe12 | y | 11 |
Fe12z11 | Fe12 | z | 11 |
Fe12x12 | Fe12 | x | 12 |
Fe12y12 | Fe12 | y | 12 |
Fe12z12 | Fe12 | z | 12 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti13x7 | Ti13 | x | 7 |
Ti13y7 | Ti13 | y | 7 |
Ti13z7 | Ti13 | z | 7 |
Ti13x8 | Ti13 | x | 8 |
Ti13y8 | Ti13 | y | 8 |
Ti13z8 | Ti13 | z | 8 |
Ti13x9 | Ti13 | x | 9 |
Ti13y9 | Ti13 | y | 9 |
Ti13z9 | Ti13 | z | 9 |
Ti13x10 | Ti13 | x | 10 |
Ti13y10 | Ti13 | y | 10 |
Ti13z10 | Ti13 | z | 10 |
Ti13x11 | Ti13 | x | 11 |
Ti13y11 | Ti13 | y | 11 |
Ti13z11 | Ti13 | z | 11 |
Ti13x12 | Ti13 | x | 12 |
Ti13y12 | Ti13 | y | 12 |
Ti13z12 | Ti13 | z | 12 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Fe13x7 | Fe13 | x | 7 |
Fe13y7 | Fe13 | y | 7 |
Fe13z7 | Fe13 | z | 7 |
Fe13x8 | Fe13 | x | 8 |
Fe13y8 | Fe13 | y | 8 |
Fe13z8 | Fe13 | z | 8 |
Fe13x9 | Fe13 | x | 9 |
Fe13y9 | Fe13 | y | 9 |
Fe13z9 | Fe13 | z | 9 |
Fe13x10 | Fe13 | x | 10 |
Fe13y10 | Fe13 | y | 10 |
Fe13z10 | Fe13 | z | 10 |
Fe13x11 | Fe13 | x | 11 |
Fe13y11 | Fe13 | y | 11 |
Fe13z11 | Fe13 | z | 11 |
Fe13x12 | Fe13 | x | 12 |
Fe13y12 | Fe13 | y | 12 |
Fe13z12 | Fe13 | z | 12 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Ti21x7 | Ti21 | x | 7 |
Ti21y7 | Ti21 | y | 7 |
Ti21z7 | Ti21 | z | 7 |
Ti21x8 | Ti21 | x | 8 |
Ti21y8 | Ti21 | y | 8 |
Ti21z8 | Ti21 | z | 8 |
Ti21x9 | Ti21 | x | 9 |
Ti21y9 | Ti21 | y | 9 |
Ti21z9 | Ti21 | z | 9 |
Ti21x10 | Ti21 | x | 10 |
Ti21y10 | Ti21 | y | 10 |
Ti21z10 | Ti21 | z | 10 |
Ti21x11 | Ti21 | x | 11 |
Ti21y11 | Ti21 | y | 11 |
Ti21z11 | Ti21 | z | 11 |
Ti21x12 | Ti21 | x | 12 |
Ti21y12 | Ti21 | y | 12 |
Ti21z12 | Ti21 | z | 12 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Fe21x7 | Fe21 | x | 7 |
Fe21y7 | Fe21 | y | 7 |
Fe21z7 | Fe21 | z | 7 |
Fe21x8 | Fe21 | x | 8 |
Fe21y8 | Fe21 | y | 8 |
Fe21z8 | Fe21 | z | 8 |
Fe21x9 | Fe21 | x | 9 |
Fe21y9 | Fe21 | y | 9 |
Fe21z9 | Fe21 | z | 9 |
Fe21x10 | Fe21 | x | 10 |
Fe21y10 | Fe21 | y | 10 |
Fe21z10 | Fe21 | z | 10 |
Fe21x11 | Fe21 | x | 11 |
Fe21y11 | Fe21 | y | 11 |
Fe21z11 | Fe21 | z | 11 |
Fe21x12 | Fe21 | x | 12 |
Fe21y12 | Fe21 | y | 12 |
Fe21z12 | Fe21 | z | 12 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Ti22x7 | Ti22 | x | 7 |
Ti22y7 | Ti22 | y | 7 |
Ti22z7 | Ti22 | z | 7 |
Ti22x8 | Ti22 | x | 8 |
Ti22y8 | Ti22 | y | 8 |
Ti22z8 | Ti22 | z | 8 |
Ti22x9 | Ti22 | x | 9 |
Ti22y9 | Ti22 | y | 9 |
Ti22z9 | Ti22 | z | 9 |
Ti22x10 | Ti22 | x | 10 |
Ti22y10 | Ti22 | y | 10 |
Ti22z10 | Ti22 | z | 10 |
Ti22x11 | Ti22 | x | 11 |
Ti22y11 | Ti22 | y | 11 |
Ti22z11 | Ti22 | z | 11 |
Ti22x12 | Ti22 | x | 12 |
Ti22y12 | Ti22 | y | 12 |
Ti22z12 | Ti22 | z | 12 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Fe22x7 | Fe22 | x | 7 |
Fe22y7 | Fe22 | y | 7 |
Fe22z7 | Fe22 | z | 7 |
Fe22x8 | Fe22 | x | 8 |
Fe22y8 | Fe22 | y | 8 |
Fe22z8 | Fe22 | z | 8 |
Fe22x9 | Fe22 | x | 9 |
Fe22y9 | Fe22 | y | 9 |
Fe22z9 | Fe22 | z | 9 |
Fe22x10 | Fe22 | x | 10 |
Fe22y10 | Fe22 | y | 10 |
Fe22z10 | Fe22 | z | 10 |
Fe22x11 | Fe22 | x | 11 |
Fe22y11 | Fe22 | y | 11 |
Fe22z11 | Fe22 | z | 11 |
Fe22x12 | Fe22 | x | 12 |
Fe22y12 | Fe22 | y | 12 |
Fe22z12 | Fe22 | z | 12 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Ti23x7 | Ti23 | x | 7 |
Ti23y7 | Ti23 | y | 7 |
Ti23z7 | Ti23 | z | 7 |
Ti23x8 | Ti23 | x | 8 |
Ti23y8 | Ti23 | y | 8 |
Ti23z8 | Ti23 | z | 8 |
Ti23x9 | Ti23 | x | 9 |
Ti23y9 | Ti23 | y | 9 |
Ti23z9 | Ti23 | z | 9 |
Ti23x10 | Ti23 | x | 10 |
Ti23y10 | Ti23 | y | 10 |
Ti23z10 | Ti23 | z | 10 |
Ti23x11 | Ti23 | x | 11 |
Ti23y11 | Ti23 | y | 11 |
Ti23z11 | Ti23 | z | 11 |
Ti23x12 | Ti23 | x | 12 |
Ti23y12 | Ti23 | y | 12 |
Ti23z12 | Ti23 | z | 12 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Fe23x7 | Fe23 | x | 7 |
Fe23y7 | Fe23 | y | 7 |
Fe23z7 | Fe23 | z | 7 |
Fe23x8 | Fe23 | x | 8 |
Fe23y8 | Fe23 | y | 8 |
Fe23z8 | Fe23 | z | 8 |
Fe23x9 | Fe23 | x | 9 |
Fe23y9 | Fe23 | y | 9 |
Fe23z9 | Fe23 | z | 9 |
Fe23x10 | Fe23 | x | 10 |
Fe23y10 | Fe23 | y | 10 |
Fe23z10 | Fe23 | z | 10 |
Fe23x11 | Fe23 | x | 11 |
Fe23y11 | Fe23 | y | 11 |
Fe23z11 | Fe23 | z | 11 |
Fe23x12 | Fe23 | x | 12 |
Fe23y12 | Fe23 | y | 12 |
Fe23z12 | Fe23 | z | 12 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0047(8) |
Ti11y1 | 0 | 0.1438(4) |
Ti11z1 | 0 | -0.0602(5) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0004(4) |
Ti11y6 | 0 | 0.0111(2) |
Ti11z6 | 0 | 0.0220(2) |
Ti11x7 | 0 | 0 |
Ti11y7 | 0 | 0 |
Ti11z7 | 0 | 0 |
Ti11x8 | 0 | 0 |
Ti11y8 | 0 | 0 |
Ti11z8 | 0 | 0 |
Ti11x9 | 0 | 0 |
Ti11y9 | 0 | 0 |
Ti11z9 | 0 | 0 |
Ti11x10 | 0 | 0 |
Ti11y10 | 0 | 0 |
Ti11z10 | 0 | 0 |
Ti11x11 | 0 | 0 |
Ti11y11 | 0 | 0 |
Ti11z11 | 0 | 0 |
Ti11x12 | 0 | 0.0004(3) |
Ti11y12 | 0 | -0.00774(15) |
Ti11z12 | 0 | -0.0120(4) |
Fe11x1 | 0 | -0.0047(8) |
Fe11y1 | 0 | 0.1438(4) |
Fe11z1 | 0 | -0.0602(5) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0004(4) |
Fe11y6 | 0 | 0.0111(2) |
Fe11z6 | 0 | 0.0220(2) |
Fe11x7 | 0 | 0 |
Fe11y7 | 0 | 0 |
Fe11z7 | 0 | 0 |
Fe11x8 | 0 | 0 |
Fe11y8 | 0 | 0 |
Fe11z8 | 0 | 0 |
Fe11x9 | 0 | 0 |
Fe11y9 | 0 | 0 |
Fe11z9 | 0 | 0 |
Fe11x10 | 0 | 0 |
Fe11y10 | 0 | 0 |
Fe11z10 | 0 | 0 |
Fe11x11 | 0 | 0 |
Fe11y11 | 0 | 0 |
Fe11z11 | 0 | 0 |
Fe11x12 | 0 | 0.0004(3) |
Fe11y12 | 0 | -0.00774(15) |
Fe11z12 | 0 | -0.0120(4) |
Ti12x1 | 0 | -0.0047(8) |
Ti12y1 | 0 | 0.1438(4) |
Ti12z1 | 0 | -0.0602(5) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0004(4) |
Ti12y6 | 0 | 0.0111(2) |
Ti12z6 | 0 | 0.0220(2) |
Ti12x7 | 0 | 0 |
Ti12y7 | 0 | 0 |
Ti12z7 | 0 | 0 |
Ti12x8 | 0 | 0 |
Ti12y8 | 0 | 0 |
Ti12z8 | 0 | 0 |
Ti12x9 | 0 | 0 |
Ti12y9 | 0 | 0 |
Ti12z9 | 0 | 0 |
Ti12x10 | 0 | 0 |
Ti12y10 | 0 | 0 |
Ti12z10 | 0 | 0 |
Ti12x11 | 0 | 0 |
Ti12y11 | 0 | 0 |
Ti12z11 | 0 | 0 |
Ti12x12 | 0 | 0.0004(3) |
Ti12y12 | 0 | -0.00774(15) |
Ti12z12 | 0 | -0.0120(4) |
Fe12x1 | 0 | -0.0047(8) |
Fe12y1 | 0 | 0.1438(4) |
Fe12z1 | 0 | -0.0602(5) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0004(4) |
Fe12y6 | 0 | 0.0111(2) |
Fe12z6 | 0 | 0.0220(2) |
Fe12x7 | 0 | 0 |
Fe12y7 | 0 | 0 |
Fe12z7 | 0 | 0 |
Fe12x8 | 0 | 0 |
Fe12y8 | 0 | 0 |
Fe12z8 | 0 | 0 |
Fe12x9 | 0 | 0 |
Fe12y9 | 0 | 0 |
Fe12z9 | 0 | 0 |
Fe12x10 | 0 | 0 |
Fe12y10 | 0 | 0 |
Fe12z10 | 0 | 0 |
Fe12x11 | 0 | 0 |
Fe12y11 | 0 | 0 |
Fe12z11 | 0 | 0 |
Fe12x12 | 0 | 0.0004(3) |
Fe12y12 | 0 | -0.00774(15) |
Fe12z12 | 0 | -0.0120(4) |
Ti13x1 | 0 | -0.0047(8) |
Ti13y1 | 0 | 0.1438(4) |
Ti13z1 | 0 | -0.0602(5) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0004(4) |
Ti13y6 | 0 | 0.0111(2) |
Ti13z6 | 0 | 0.0220(2) |
Ti13x7 | 0 | 0 |
Ti13y7 | 0 | 0 |
Ti13z7 | 0 | 0 |
Ti13x8 | 0 | 0 |
Ti13y8 | 0 | 0 |
Ti13z8 | 0 | 0 |
Ti13x9 | 0 | 0 |
Ti13y9 | 0 | 0 |
Ti13z9 | 0 | 0 |
Ti13x10 | 0 | 0 |
Ti13y10 | 0 | 0 |
Ti13z10 | 0 | 0 |
Ti13x11 | 0 | 0 |
Ti13y11 | 0 | 0 |
Ti13z11 | 0 | 0 |
Ti13x12 | 0 | 0.0004(3) |
Ti13y12 | 0 | -0.00774(15) |
Ti13z12 | 0 | -0.0120(4) |
Fe13x1 | 0 | -0.0047(8) |
Fe13y1 | 0 | 0.1438(4) |
Fe13z1 | 0 | -0.0602(5) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0004(4) |
Fe13y6 | 0 | 0.0111(2) |
Fe13z6 | 0 | 0.0220(2) |
Fe13x7 | 0 | 0 |
Fe13y7 | 0 | 0 |
Fe13z7 | 0 | 0 |
Fe13x8 | 0 | 0 |
Fe13y8 | 0 | 0 |
Fe13z8 | 0 | 0 |
Fe13x9 | 0 | 0 |
Fe13y9 | 0 | 0 |
Fe13z9 | 0 | 0 |
Fe13x10 | 0 | 0 |
Fe13y10 | 0 | 0 |
Fe13z10 | 0 | 0 |
Fe13x11 | 0 | 0 |
Fe13y11 | 0 | 0 |
Fe13z11 | 0 | 0 |
Fe13x12 | 0 | 0.0004(3) |
Fe13y12 | 0 | -0.00774(15) |
Fe13z12 | 0 | -0.0120(4) |
Ti21x1 | 0 | 0.0007(8) |
Ti21y1 | 0 | 0.1559(4) |
Ti21z1 | 0 | -0.0639(5) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0016(4) |
Ti21y6 | 0 | 0.00967(19) |
Ti21z6 | 0 | 0.0224(2) |
Ti21x7 | 0 | 0 |
Ti21y7 | 0 | 0 |
Ti21z7 | 0 | 0 |
Ti21x8 | 0 | 0 |
Ti21y8 | 0 | 0 |
Ti21z8 | 0 | 0 |
Ti21x9 | 0 | 0 |
Ti21y9 | 0 | 0 |
Ti21z9 | 0 | 0 |
Ti21x10 | 0 | 0 |
Ti21y10 | 0 | 0 |
Ti21z10 | 0 | 0 |
Ti21x11 | 0 | 0 |
Ti21y11 | 0 | 0 |
Ti21z11 | 0 | 0 |
Ti21x12 | 0 | 0.0023(3) |
Ti21y12 | 0 | -0.00908(15) |
Ti21z12 | 0 | -0.0113(3) |
Fe21x1 | 0 | 0.0007(8) |
Fe21y1 | 0 | 0.1559(4) |
Fe21z1 | 0 | -0.0639(5) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0016(4) |
Fe21y6 | 0 | 0.00967(19) |
Fe21z6 | 0 | 0.0224(2) |
Fe21x7 | 0 | 0 |
Fe21y7 | 0 | 0 |
Fe21z7 | 0 | 0 |
Fe21x8 | 0 | 0 |
Fe21y8 | 0 | 0 |
Fe21z8 | 0 | 0 |
Fe21x9 | 0 | 0 |
Fe21y9 | 0 | 0 |
Fe21z9 | 0 | 0 |
Fe21x10 | 0 | 0 |
Fe21y10 | 0 | 0 |
Fe21z10 | 0 | 0 |
Fe21x11 | 0 | 0 |
Fe21y11 | 0 | 0 |
Fe21z11 | 0 | 0 |
Fe21x12 | 0 | 0.0023(3) |
Fe21y12 | 0 | -0.00908(15) |
Fe21z12 | 0 | -0.0113(3) |
Ti22x1 | 0 | 0.0007(8) |
Ti22y1 | 0 | 0.1559(4) |
Ti22z1 | 0 | -0.0639(5) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0016(4) |
Ti22y6 | 0 | 0.00967(19) |
Ti22z6 | 0 | 0.0224(2) |
Ti22x7 | 0 | 0 |
Ti22y7 | 0 | 0 |
Ti22z7 | 0 | 0 |
Ti22x8 | 0 | 0 |
Ti22y8 | 0 | 0 |
Ti22z8 | 0 | 0 |
Ti22x9 | 0 | 0 |
Ti22y9 | 0 | 0 |
Ti22z9 | 0 | 0 |
Ti22x10 | 0 | 0 |
Ti22y10 | 0 | 0 |
Ti22z10 | 0 | 0 |
Ti22x11 | 0 | 0 |
Ti22y11 | 0 | 0 |
Ti22z11 | 0 | 0 |
Ti22x12 | 0 | 0.0023(3) |
Ti22y12 | 0 | -0.00908(15) |
Ti22z12 | 0 | -0.0113(3) |
Fe22x1 | 0 | 0.0007(8) |
Fe22y1 | 0 | 0.1559(4) |
Fe22z1 | 0 | -0.0639(5) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0016(4) |
Fe22y6 | 0 | 0.00967(19) |
Fe22z6 | 0 | 0.0224(2) |
Fe22x7 | 0 | 0 |
Fe22y7 | 0 | 0 |
Fe22z7 | 0 | 0 |
Fe22x8 | 0 | 0 |
Fe22y8 | 0 | 0 |
Fe22z8 | 0 | 0 |
Fe22x9 | 0 | 0 |
Fe22y9 | 0 | 0 |
Fe22z9 | 0 | 0 |
Fe22x10 | 0 | 0 |
Fe22y10 | 0 | 0 |
Fe22z10 | 0 | 0 |
Fe22x11 | 0 | 0 |
Fe22y11 | 0 | 0 |
Fe22z11 | 0 | 0 |
Fe22x12 | 0 | 0.0023(3) |
Fe22y12 | 0 | -0.00908(15) |
Fe22z12 | 0 | -0.0113(3) |
Ti23x1 | 0 | 0.0007(8) |
Ti23y1 | 0 | 0.1559(4) |
Ti23z1 | 0 | -0.0639(5) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0016(4) |
Ti23y6 | 0 | 0.00967(19) |
Ti23z6 | 0 | 0.0224(2) |
Ti23x7 | 0 | 0 |
Ti23y7 | 0 | 0 |
Ti23z7 | 0 | 0 |
Ti23x8 | 0 | 0 |
Ti23y8 | 0 | 0 |
Ti23z8 | 0 | 0 |
Ti23x9 | 0 | 0 |
Ti23y9 | 0 | 0 |
Ti23z9 | 0 | 0 |
Ti23x10 | 0 | 0 |
Ti23y10 | 0 | 0 |
Ti23z10 | 0 | 0 |
Ti23x11 | 0 | 0 |
Ti23y11 | 0 | 0 |
Ti23z11 | 0 | 0 |
Ti23x12 | 0 | 0.0023(3) |
Ti23y12 | 0 | -0.00908(15) |
Ti23z12 | 0 | -0.0113(3) |
Fe23x1 | 0 | 0.0007(8) |
Fe23y1 | 0 | 0.1559(4) |
Fe23z1 | 0 | -0.0639(5) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0016(4) |
Fe23y6 | 0 | 0.00967(19) |
Fe23z6 | 0 | 0.0224(2) |
Fe23x7 | 0 | 0 |
Fe23y7 | 0 | 0 |
Fe23z7 | 0 | 0 |
Fe23x8 | 0 | 0 |
Fe23y8 | 0 | 0 |
Fe23z8 | 0 | 0 |
Fe23x9 | 0 | 0 |
Fe23y9 | 0 | 0 |
Fe23z9 | 0 | 0 |
Fe23x10 | 0 | 0 |
Fe23y10 | 0 | 0 |
Fe23z10 | 0 | 0 |
Fe23x11 | 0 | 0 |
Fe23y11 | 0 | 0 |
Fe23z11 | 0 | 0 |
Fe23x12 | 0 | 0.0023(3) |
Fe23y12 | 0 | -0.00908(15) |
Fe23z12 | 0 | -0.0113(3) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | 0.00012(11) |
La1 | y | 1 | 1 | 0.03816(4) |
La1 | z | 1 | 1 | 0.00043(5) |
La1 | x | 1 | 2 | 0.00019(3) |
La1 | y | 1 | 2 | -0.00069(4) |
La1 | z | 1 | 2 | 0.00061(4) |
O1 | x | 4 | 1 | 0.0006(5) |
O1 | y | 4 | 1 | 0.0233(6) |
O1 | z | 4 | 1 | -0.0105(5) |
O1 | x | 4 | 2 | 0.0000(3) |
O1 | y | 4 | 2 | 0.0080(5) |
O1 | z | 4 | 2 | 0.0049(5) |
O1 | x | 4 | 3 | -0.0001(7) |
O1 | y | 4 | 3 | -0.0077(8) |
O1 | z | 4 | 3 | 0.0057(7) |
O1 | x | 4 | 4 | 0.0005(4) |
O1 | y | 4 | 4 | -0.0057(5) |
O1 | z | 4 | 4 | 0.0006(6) |
O1 | x | 4 | 5 | 0.0008(8) |
O1 | y | 4 | 5 | 0.0121(10) |
O1 | z | 4 | 5 | 0.0021(9) |
O1 | x | 4 | 6 | 0 |
O1 | y | 4 | 6 | 0 |
O1 | z | 4 | 6 | 0 |
O2 | x | 5 | 1 | 0.0015(3) |
O2 | y | 5 | 1 | 0.0348(4) |
O2 | z | 5 | 1 | 0.0011(4) |
O2 | x | 5 | 2 | -0.0082(3) |
O2 | y | 5 | 2 | -0.0039(4) |
O2 | z | 5 | 2 | 0.0140(5) |
O2 | x | 5 | 3 | 0.0054(4) |
O2 | y | 5 | 3 | -0.0042(5) |
O2 | z | 5 | 3 | -0.0055(5) |
O2 | x | 5 | 4 | 0.0029(3) |
O2 | y | 5 | 4 | 0.0081(5) |
O2 | z | 5 | 4 | -0.0051(5) |
O2 | x | 5 | 5 | -0.0071(4) |
O2 | y | 5 | 5 | 0.0058(6) |
O2 | z | 5 | 5 | 0.0013(6) |
O2 | x | 5 | 6 | 0 |
O2 | y | 5 | 6 | 0 |
O2 | z | 5 | 6 | 0 |
O3 | x | 6 | 1 | -0.0022(3) |
O3 | y | 6 | 1 | 0.0361(4) |
O3 | z | 6 | 1 | 0.0008(4) |
O3 | x | 6 | 2 | 0.0067(3) |
O3 | y | 6 | 2 | 0.0023(5) |
O3 | z | 6 | 2 | 0.0172(5) |
O3 | x | 6 | 3 | -0.0057(4) |
O3 | y | 6 | 3 | -0.0020(5) |
O3 | z | 6 | 3 | -0.0065(5) |
O3 | x | 6 | 4 | -0.0015(3) |
O3 | y | 6 | 4 | 0.0048(5) |
O3 | z | 6 | 4 | -0.0042(5) |
O3 | x | 6 | 5 | 0.0064(4) |
O3 | y | 6 | 5 | 0.0034(6) |
O3 | z | 6 | 5 | 0.0031(6) |
O3 | x | 6 | 6 | 0 |
O3 | y | 6 | 6 | 0 |
O3 | z | 6 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00030(6) |
La1 | U22 | 1 | 1 | 0.00028(7) |
La1 | U33 | 1 | 1 | 0.00124(9) |
La1 | U12 | 1 | 1 | 0.00013(10) |
La1 | U13 | 1 | 1 | 0.00015(7) |
La1 | U23 | 1 | 1 | -0.00029(10) |
La1 | U11 | 1 | 2 | 0.00081(8) |
La1 | U22 | 1 | 2 | 0.00033(7) |
La1 | U33 | 1 | 2 | -0.00077(10) |
La1 | U12 | 1 | 2 | -0.00016(10) |
La1 | U13 | 1 | 2 | 0.00026(17) |
La1 | U23 | 1 | 2 | 0.00035(8) |
La1 | U11 | 1 | 3 | -0.00014(9) |
La1 | U22 | 1 | 3 | 0.00086(9) |
La1 | U33 | 1 | 3 | -0.00052(12) |
La1 | U12 | 1 | 3 | -0.00001(8) |
La1 | U13 | 1 | 3 | -0.00006(10) |
La1 | U23 | 1 | 3 | -0.00007(17) |
La1 | U11 | 1 | 4 | 0 |
La1 | U22 | 1 | 4 | 0 |
La1 | U33 | 1 | 4 | 0 |
La1 | U12 | 1 | 4 | 0 |
La1 | U13 | 1 | 4 | 0 |
La1 | U23 | 1 | 4 | 0 |
Structural Formula Sum: Fe0.571 La3.429 O11.429 Ti2.858 [ Help ]
Formula weight: 827.9 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+3/4,x2+1/2,x3,x4+1/4 |
6 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
7 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
8 | x1+3/4,x2,-x3+1/2,x4+1/4 |
9 | x1+1/2,x2,x3,x4+1/2 |
10 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
11 | -x1+1/2,-x2,-x3,-x4 |
12 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8339(19) Å [ Help ]
b: 5.2752(13) Å [ Help ]
c: 5.5520(18) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 89.990(16) ° [ Help ]
Volume: 229.44(10) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.071429 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 320 K [ Help ]
μ: 18.89 mm-1 [ Help ]
Absorption correction type: numerical [ Help ]
Absorption correction remarks: SADABS (version 2008/1) [ Help ]
Minimum transmission factor: 0.3526 [ Help ]
Maximum transmission factor: 0.7476 [ Help ]
Total nb. of reflections: 11906 [ Help ]
Nb. of observed reflections: 10996 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0620 [ Help ]
wR(obs): 0.0829 [ Help ]
R(all): 0.0671 [ Help ]
wR(all): 0.0836 [ Help ]
S(all): 3.25 [ Help ]
S(obs): 3.35 [ Help ]
Nb. of reflections: 11906 [ Help ]
Nb. of parameters: 161 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0089 [ Help ]
Δ/σ(mean): 0.0005 [ Help ]
Δρ(max): 18.21 e_Å-3 [ Help ]
Δρ(min): -5.15 e_Å-3 [ Help ]
Extinction method: none [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00022(2) | -0.01726(4) | 0.00253(4) | Uani | 0.00792(6) | 16 | 0.1429 | d | ? | ? | ? |
La2 | La | -0.00164(10) | 0.29585(9) | -0.08961(14) | Uani | 0.00848(9) | 16 | 0.0357 | d | ? | ? | ? |
La3 | La | -0.00237(11) | -0.23353(11) | 0.05001(15) | Uani | 0.01473(13) | 16 | 0.0357 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00551(19) | 8 | 0.023(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00551(19) | 8 | 0.048(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00551(19) | 16 | 0.0282(10) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00551(19) | 16 | 0.0075(10) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00551(19) | 16 | 0.0352(9) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00551(19) | 16 | 0.0005(9) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00526(19) | 8 | 0.024(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00526(19) | 8 | 0.048(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00526(19) | 16 | 0.0281(10) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00526(19) | 16 | 0.0077(10) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00526(19) | 16 | 0.0343(9) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00526(19) | 16 | 0.0014(9) | d | ? | ? | ? |
O1 | O | -0.0004(3) | 0.0066(4) | 0.5559(5) | Uani | 0.0102(5) | 16 | 0.2143 | d | ? | ? | ? |
O2 | O | 0.2255(3) | 0.2153(4) | 0.2099(4) | Uani | 0.0095(5) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7756(3) | 0.2088(4) | 0.2060(4) | Uani | 0.0092(5) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00441(11) | 0.01285(9) | 0.00649(14) | 0.00010(9) | -0.00006(12) | -0.00165(7) |
La2 | La | 0.00316(13) | 0.01693(15) | 0.0054(2) | -0.00020(18) | -0.00080(16) | -0.00203(14) |
La3 | La | 0.00331(15) | 0.0276(2) | 0.0133(3) | -0.0001(2) | -0.0001(2) | -0.00712(17) |
Ti11 | Ti | 0.0046(3) | 0.0091(2) | 0.0029(4) | -0.0025(5) | -0.0017(5) | 0.00001(19) |
Fe11 | Fe | 0.0046(3) | 0.0091(2) | 0.0029(4) | -0.0025(5) | -0.0017(5) | 0.00001(19) |
Ti12 | Ti | 0.0046(3) | 0.0091(2) | 0.0029(4) | -0.0025(5) | -0.0017(5) | 0.00001(19) |
Fe12 | Fe | 0.0046(3) | 0.0091(2) | 0.0029(4) | -0.0025(5) | -0.0017(5) | 0.00001(19) |
Ti13 | Ti | 0.0046(3) | 0.0091(2) | 0.0029(4) | -0.0025(5) | -0.0017(5) | 0.00001(19) |
Fe13 | Fe | 0.0046(3) | 0.0091(2) | 0.0029(4) | -0.0025(5) | -0.0017(5) | 0.00001(19) |
Ti21 | Ti | 0.0042(3) | 0.0090(2) | 0.0027(4) | -0.0026(5) | -0.0015(5) | 0.00051(19) |
Fe21 | Fe | 0.0042(3) | 0.0090(2) | 0.0027(4) | -0.0026(5) | -0.0015(5) | 0.00051(19) |
Ti22 | Ti | 0.0042(3) | 0.0090(2) | 0.0027(4) | -0.0026(5) | -0.0015(5) | 0.00051(19) |
Fe22 | Fe | 0.0042(3) | 0.0090(2) | 0.0027(4) | -0.0026(5) | -0.0015(5) | 0.00051(19) |
Ti23 | Ti | 0.0042(3) | 0.0090(2) | 0.0027(4) | -0.0026(5) | -0.0015(5) | 0.00051(19) |
Fe23 | Fe | 0.0042(3) | 0.0090(2) | 0.0027(4) | -0.0026(5) | -0.0015(5) | 0.00051(19) |
O1 | O | 0.0014(7) | 0.0176(8) | 0.0115(11) | 0.0005(8) | 0.0002(6) | 0.0004(7) |
O2 | O | 0.0092(10) | 0.0154(8) | 0.0039(9) | -0.0014(7) | 0.0000(7) | 0.0028(7) |
O3 | O | 0.0082(10) | 0.0141(8) | 0.0053(10) | 0.0005(6) | 0.0008(7) | 0.0026(6) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | 10 |
11 | 11 |
12 | 12 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.142857 | 0.950000 |
2 | 0.110424 | 0.035714 | 0.950000 |
3 | -0.105974 | 0.035714 | 0.950000 |
4 | 0.000000 | 0.214286 | 0.950000 |
5 | 0.000000 | 0.250000 | 0.950000 |
6 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.1429 |
La2 | 0.110424(6) | 0.0357 |
La3 | -0.105974(8) | 0.0357 |
Ti11 | 0 | 0.0714 |
Fe11 | 0 | 0.0714 |
Ti12 | 0.0536 | 0.0357 |
Fe12 | 0.0536 | 0.0357 |
Ti13 | 0.0893 | 0.0357 |
Fe13 | 0.0893 | 0.0357 |
Ti21 | 0 | 0.0714 |
Fe21 | 0 | 0.0714 |
Ti22 | 0.0536 | 0.0357 |
Fe22 | 0.0536 | 0.0357 |
Ti23 | 0.0893 | 0.0357 |
Fe23 | 0.0893 | 0.0357 |
O1 | 0 | 0.2143 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Ti11x7 | Ti11 | x | 7 |
Ti11y7 | Ti11 | y | 7 |
Ti11z7 | Ti11 | z | 7 |
Ti11x8 | Ti11 | x | 8 |
Ti11y8 | Ti11 | y | 8 |
Ti11z8 | Ti11 | z | 8 |
Ti11x9 | Ti11 | x | 9 |
Ti11y9 | Ti11 | y | 9 |
Ti11z9 | Ti11 | z | 9 |
Ti11x10 | Ti11 | x | 10 |
Ti11y10 | Ti11 | y | 10 |
Ti11z10 | Ti11 | z | 10 |
Ti11x11 | Ti11 | x | 11 |
Ti11y11 | Ti11 | y | 11 |
Ti11z11 | Ti11 | z | 11 |
Ti11x12 | Ti11 | x | 12 |
Ti11y12 | Ti11 | y | 12 |
Ti11z12 | Ti11 | z | 12 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Fe11x7 | Fe11 | x | 7 |
Fe11y7 | Fe11 | y | 7 |
Fe11z7 | Fe11 | z | 7 |
Fe11x8 | Fe11 | x | 8 |
Fe11y8 | Fe11 | y | 8 |
Fe11z8 | Fe11 | z | 8 |
Fe11x9 | Fe11 | x | 9 |
Fe11y9 | Fe11 | y | 9 |
Fe11z9 | Fe11 | z | 9 |
Fe11x10 | Fe11 | x | 10 |
Fe11y10 | Fe11 | y | 10 |
Fe11z10 | Fe11 | z | 10 |
Fe11x11 | Fe11 | x | 11 |
Fe11y11 | Fe11 | y | 11 |
Fe11z11 | Fe11 | z | 11 |
Fe11x12 | Fe11 | x | 12 |
Fe11y12 | Fe11 | y | 12 |
Fe11z12 | Fe11 | z | 12 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Ti12x7 | Ti12 | x | 7 |
Ti12y7 | Ti12 | y | 7 |
Ti12z7 | Ti12 | z | 7 |
Ti12x8 | Ti12 | x | 8 |
Ti12y8 | Ti12 | y | 8 |
Ti12z8 | Ti12 | z | 8 |
Ti12x9 | Ti12 | x | 9 |
Ti12y9 | Ti12 | y | 9 |
Ti12z9 | Ti12 | z | 9 |
Ti12x10 | Ti12 | x | 10 |
Ti12y10 | Ti12 | y | 10 |
Ti12z10 | Ti12 | z | 10 |
Ti12x11 | Ti12 | x | 11 |
Ti12y11 | Ti12 | y | 11 |
Ti12z11 | Ti12 | z | 11 |
Ti12x12 | Ti12 | x | 12 |
Ti12y12 | Ti12 | y | 12 |
Ti12z12 | Ti12 | z | 12 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Fe12x7 | Fe12 | x | 7 |
Fe12y7 | Fe12 | y | 7 |
Fe12z7 | Fe12 | z | 7 |
Fe12x8 | Fe12 | x | 8 |
Fe12y8 | Fe12 | y | 8 |
Fe12z8 | Fe12 | z | 8 |
Fe12x9 | Fe12 | x | 9 |
Fe12y9 | Fe12 | y | 9 |
Fe12z9 | Fe12 | z | 9 |
Fe12x10 | Fe12 | x | 10 |
Fe12y10 | Fe12 | y | 10 |
Fe12z10 | Fe12 | z | 10 |
Fe12x11 | Fe12 | x | 11 |
Fe12y11 | Fe12 | y | 11 |
Fe12z11 | Fe12 | z | 11 |
Fe12x12 | Fe12 | x | 12 |
Fe12y12 | Fe12 | y | 12 |
Fe12z12 | Fe12 | z | 12 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti13x7 | Ti13 | x | 7 |
Ti13y7 | Ti13 | y | 7 |
Ti13z7 | Ti13 | z | 7 |
Ti13x8 | Ti13 | x | 8 |
Ti13y8 | Ti13 | y | 8 |
Ti13z8 | Ti13 | z | 8 |
Ti13x9 | Ti13 | x | 9 |
Ti13y9 | Ti13 | y | 9 |
Ti13z9 | Ti13 | z | 9 |
Ti13x10 | Ti13 | x | 10 |
Ti13y10 | Ti13 | y | 10 |
Ti13z10 | Ti13 | z | 10 |
Ti13x11 | Ti13 | x | 11 |
Ti13y11 | Ti13 | y | 11 |
Ti13z11 | Ti13 | z | 11 |
Ti13x12 | Ti13 | x | 12 |
Ti13y12 | Ti13 | y | 12 |
Ti13z12 | Ti13 | z | 12 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Fe13x7 | Fe13 | x | 7 |
Fe13y7 | Fe13 | y | 7 |
Fe13z7 | Fe13 | z | 7 |
Fe13x8 | Fe13 | x | 8 |
Fe13y8 | Fe13 | y | 8 |
Fe13z8 | Fe13 | z | 8 |
Fe13x9 | Fe13 | x | 9 |
Fe13y9 | Fe13 | y | 9 |
Fe13z9 | Fe13 | z | 9 |
Fe13x10 | Fe13 | x | 10 |
Fe13y10 | Fe13 | y | 10 |
Fe13z10 | Fe13 | z | 10 |
Fe13x11 | Fe13 | x | 11 |
Fe13y11 | Fe13 | y | 11 |
Fe13z11 | Fe13 | z | 11 |
Fe13x12 | Fe13 | x | 12 |
Fe13y12 | Fe13 | y | 12 |
Fe13z12 | Fe13 | z | 12 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Ti21x7 | Ti21 | x | 7 |
Ti21y7 | Ti21 | y | 7 |
Ti21z7 | Ti21 | z | 7 |
Ti21x8 | Ti21 | x | 8 |
Ti21y8 | Ti21 | y | 8 |
Ti21z8 | Ti21 | z | 8 |
Ti21x9 | Ti21 | x | 9 |
Ti21y9 | Ti21 | y | 9 |
Ti21z9 | Ti21 | z | 9 |
Ti21x10 | Ti21 | x | 10 |
Ti21y10 | Ti21 | y | 10 |
Ti21z10 | Ti21 | z | 10 |
Ti21x11 | Ti21 | x | 11 |
Ti21y11 | Ti21 | y | 11 |
Ti21z11 | Ti21 | z | 11 |
Ti21x12 | Ti21 | x | 12 |
Ti21y12 | Ti21 | y | 12 |
Ti21z12 | Ti21 | z | 12 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Fe21x7 | Fe21 | x | 7 |
Fe21y7 | Fe21 | y | 7 |
Fe21z7 | Fe21 | z | 7 |
Fe21x8 | Fe21 | x | 8 |
Fe21y8 | Fe21 | y | 8 |
Fe21z8 | Fe21 | z | 8 |
Fe21x9 | Fe21 | x | 9 |
Fe21y9 | Fe21 | y | 9 |
Fe21z9 | Fe21 | z | 9 |
Fe21x10 | Fe21 | x | 10 |
Fe21y10 | Fe21 | y | 10 |
Fe21z10 | Fe21 | z | 10 |
Fe21x11 | Fe21 | x | 11 |
Fe21y11 | Fe21 | y | 11 |
Fe21z11 | Fe21 | z | 11 |
Fe21x12 | Fe21 | x | 12 |
Fe21y12 | Fe21 | y | 12 |
Fe21z12 | Fe21 | z | 12 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Ti22x7 | Ti22 | x | 7 |
Ti22y7 | Ti22 | y | 7 |
Ti22z7 | Ti22 | z | 7 |
Ti22x8 | Ti22 | x | 8 |
Ti22y8 | Ti22 | y | 8 |
Ti22z8 | Ti22 | z | 8 |
Ti22x9 | Ti22 | x | 9 |
Ti22y9 | Ti22 | y | 9 |
Ti22z9 | Ti22 | z | 9 |
Ti22x10 | Ti22 | x | 10 |
Ti22y10 | Ti22 | y | 10 |
Ti22z10 | Ti22 | z | 10 |
Ti22x11 | Ti22 | x | 11 |
Ti22y11 | Ti22 | y | 11 |
Ti22z11 | Ti22 | z | 11 |
Ti22x12 | Ti22 | x | 12 |
Ti22y12 | Ti22 | y | 12 |
Ti22z12 | Ti22 | z | 12 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Fe22x7 | Fe22 | x | 7 |
Fe22y7 | Fe22 | y | 7 |
Fe22z7 | Fe22 | z | 7 |
Fe22x8 | Fe22 | x | 8 |
Fe22y8 | Fe22 | y | 8 |
Fe22z8 | Fe22 | z | 8 |
Fe22x9 | Fe22 | x | 9 |
Fe22y9 | Fe22 | y | 9 |
Fe22z9 | Fe22 | z | 9 |
Fe22x10 | Fe22 | x | 10 |
Fe22y10 | Fe22 | y | 10 |
Fe22z10 | Fe22 | z | 10 |
Fe22x11 | Fe22 | x | 11 |
Fe22y11 | Fe22 | y | 11 |
Fe22z11 | Fe22 | z | 11 |
Fe22x12 | Fe22 | x | 12 |
Fe22y12 | Fe22 | y | 12 |
Fe22z12 | Fe22 | z | 12 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Ti23x7 | Ti23 | x | 7 |
Ti23y7 | Ti23 | y | 7 |
Ti23z7 | Ti23 | z | 7 |
Ti23x8 | Ti23 | x | 8 |
Ti23y8 | Ti23 | y | 8 |
Ti23z8 | Ti23 | z | 8 |
Ti23x9 | Ti23 | x | 9 |
Ti23y9 | Ti23 | y | 9 |
Ti23z9 | Ti23 | z | 9 |
Ti23x10 | Ti23 | x | 10 |
Ti23y10 | Ti23 | y | 10 |
Ti23z10 | Ti23 | z | 10 |
Ti23x11 | Ti23 | x | 11 |
Ti23y11 | Ti23 | y | 11 |
Ti23z11 | Ti23 | z | 11 |
Ti23x12 | Ti23 | x | 12 |
Ti23y12 | Ti23 | y | 12 |
Ti23z12 | Ti23 | z | 12 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Fe23x7 | Fe23 | x | 7 |
Fe23y7 | Fe23 | y | 7 |
Fe23z7 | Fe23 | z | 7 |
Fe23x8 | Fe23 | x | 8 |
Fe23y8 | Fe23 | y | 8 |
Fe23z8 | Fe23 | z | 8 |
Fe23x9 | Fe23 | x | 9 |
Fe23y9 | Fe23 | y | 9 |
Fe23z9 | Fe23 | z | 9 |
Fe23x10 | Fe23 | x | 10 |
Fe23y10 | Fe23 | y | 10 |
Fe23z10 | Fe23 | z | 10 |
Fe23x11 | Fe23 | x | 11 |
Fe23y11 | Fe23 | y | 11 |
Fe23z11 | Fe23 | z | 11 |
Fe23x12 | Fe23 | x | 12 |
Fe23y12 | Fe23 | y | 12 |
Fe23z12 | Fe23 | z | 12 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0066(7) |
Ti11y1 | 0 | 0.1435(4) |
Ti11z1 | 0 | -0.0608(5) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0006(4) |
Ti11y6 | 0 | 0.01131(19) |
Ti11z6 | 0 | 0.0223(2) |
Ti11x7 | 0 | 0 |
Ti11y7 | 0 | 0 |
Ti11z7 | 0 | 0 |
Ti11x8 | 0 | 0 |
Ti11y8 | 0 | 0 |
Ti11z8 | 0 | 0 |
Ti11x9 | 0 | 0 |
Ti11y9 | 0 | 0 |
Ti11z9 | 0 | 0 |
Ti11x10 | 0 | 0 |
Ti11y10 | 0 | 0 |
Ti11z10 | 0 | 0 |
Ti11x11 | 0 | 0 |
Ti11y11 | 0 | 0 |
Ti11z11 | 0 | 0 |
Ti11x12 | 0 | 0.0008(2) |
Ti11y12 | 0 | -0.00798(15) |
Ti11z12 | 0 | -0.0118(3) |
Fe11x1 | 0 | -0.0066(7) |
Fe11y1 | 0 | 0.1435(4) |
Fe11z1 | 0 | -0.0608(5) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0006(4) |
Fe11y6 | 0 | 0.01131(19) |
Fe11z6 | 0 | 0.0223(2) |
Fe11x7 | 0 | 0 |
Fe11y7 | 0 | 0 |
Fe11z7 | 0 | 0 |
Fe11x8 | 0 | 0 |
Fe11y8 | 0 | 0 |
Fe11z8 | 0 | 0 |
Fe11x9 | 0 | 0 |
Fe11y9 | 0 | 0 |
Fe11z9 | 0 | 0 |
Fe11x10 | 0 | 0 |
Fe11y10 | 0 | 0 |
Fe11z10 | 0 | 0 |
Fe11x11 | 0 | 0 |
Fe11y11 | 0 | 0 |
Fe11z11 | 0 | 0 |
Fe11x12 | 0 | 0.0008(2) |
Fe11y12 | 0 | -0.00798(15) |
Fe11z12 | 0 | -0.0118(3) |
Ti12x1 | 0 | -0.0066(7) |
Ti12y1 | 0 | 0.1435(4) |
Ti12z1 | 0 | -0.0608(5) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0006(4) |
Ti12y6 | 0 | 0.01131(19) |
Ti12z6 | 0 | 0.0223(2) |
Ti12x7 | 0 | 0 |
Ti12y7 | 0 | 0 |
Ti12z7 | 0 | 0 |
Ti12x8 | 0 | 0 |
Ti12y8 | 0 | 0 |
Ti12z8 | 0 | 0 |
Ti12x9 | 0 | 0 |
Ti12y9 | 0 | 0 |
Ti12z9 | 0 | 0 |
Ti12x10 | 0 | 0 |
Ti12y10 | 0 | 0 |
Ti12z10 | 0 | 0 |
Ti12x11 | 0 | 0 |
Ti12y11 | 0 | 0 |
Ti12z11 | 0 | 0 |
Ti12x12 | 0 | 0.0008(2) |
Ti12y12 | 0 | -0.00798(15) |
Ti12z12 | 0 | -0.0118(3) |
Fe12x1 | 0 | -0.0066(7) |
Fe12y1 | 0 | 0.1435(4) |
Fe12z1 | 0 | -0.0608(5) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0006(4) |
Fe12y6 | 0 | 0.01131(19) |
Fe12z6 | 0 | 0.0223(2) |
Fe12x7 | 0 | 0 |
Fe12y7 | 0 | 0 |
Fe12z7 | 0 | 0 |
Fe12x8 | 0 | 0 |
Fe12y8 | 0 | 0 |
Fe12z8 | 0 | 0 |
Fe12x9 | 0 | 0 |
Fe12y9 | 0 | 0 |
Fe12z9 | 0 | 0 |
Fe12x10 | 0 | 0 |
Fe12y10 | 0 | 0 |
Fe12z10 | 0 | 0 |
Fe12x11 | 0 | 0 |
Fe12y11 | 0 | 0 |
Fe12z11 | 0 | 0 |
Fe12x12 | 0 | 0.0008(2) |
Fe12y12 | 0 | -0.00798(15) |
Fe12z12 | 0 | -0.0118(3) |
Ti13x1 | 0 | -0.0066(7) |
Ti13y1 | 0 | 0.1435(4) |
Ti13z1 | 0 | -0.0608(5) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0006(4) |
Ti13y6 | 0 | 0.01131(19) |
Ti13z6 | 0 | 0.0223(2) |
Ti13x7 | 0 | 0 |
Ti13y7 | 0 | 0 |
Ti13z7 | 0 | 0 |
Ti13x8 | 0 | 0 |
Ti13y8 | 0 | 0 |
Ti13z8 | 0 | 0 |
Ti13x9 | 0 | 0 |
Ti13y9 | 0 | 0 |
Ti13z9 | 0 | 0 |
Ti13x10 | 0 | 0 |
Ti13y10 | 0 | 0 |
Ti13z10 | 0 | 0 |
Ti13x11 | 0 | 0 |
Ti13y11 | 0 | 0 |
Ti13z11 | 0 | 0 |
Ti13x12 | 0 | 0.0008(2) |
Ti13y12 | 0 | -0.00798(15) |
Ti13z12 | 0 | -0.0118(3) |
Fe13x1 | 0 | -0.0066(7) |
Fe13y1 | 0 | 0.1435(4) |
Fe13z1 | 0 | -0.0608(5) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0006(4) |
Fe13y6 | 0 | 0.01131(19) |
Fe13z6 | 0 | 0.0223(2) |
Fe13x7 | 0 | 0 |
Fe13y7 | 0 | 0 |
Fe13z7 | 0 | 0 |
Fe13x8 | 0 | 0 |
Fe13y8 | 0 | 0 |
Fe13z8 | 0 | 0 |
Fe13x9 | 0 | 0 |
Fe13y9 | 0 | 0 |
Fe13z9 | 0 | 0 |
Fe13x10 | 0 | 0 |
Fe13y10 | 0 | 0 |
Fe13z10 | 0 | 0 |
Fe13x11 | 0 | 0 |
Fe13y11 | 0 | 0 |
Fe13z11 | 0 | 0 |
Fe13x12 | 0 | 0.0008(2) |
Fe13y12 | 0 | -0.00798(15) |
Fe13z12 | 0 | -0.0118(3) |
Ti21x1 | 0 | -0.0013(7) |
Ti21y1 | 0 | 0.1565(4) |
Ti21z1 | 0 | -0.0646(5) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0014(3) |
Ti21y6 | 0 | 0.00972(19) |
Ti21z6 | 0 | 0.0221(2) |
Ti21x7 | 0 | 0 |
Ti21y7 | 0 | 0 |
Ti21z7 | 0 | 0 |
Ti21x8 | 0 | 0 |
Ti21y8 | 0 | 0 |
Ti21z8 | 0 | 0 |
Ti21x9 | 0 | 0 |
Ti21y9 | 0 | 0 |
Ti21z9 | 0 | 0 |
Ti21x10 | 0 | 0 |
Ti21y10 | 0 | 0 |
Ti21z10 | 0 | 0 |
Ti21x11 | 0 | 0 |
Ti21y11 | 0 | 0 |
Ti21z11 | 0 | 0 |
Ti21x12 | 0 | 0.0028(2) |
Ti21y12 | 0 | -0.00881(15) |
Ti21z12 | 0 | -0.0117(3) |
Fe21x1 | 0 | -0.0013(7) |
Fe21y1 | 0 | 0.1565(4) |
Fe21z1 | 0 | -0.0646(5) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0014(3) |
Fe21y6 | 0 | 0.00972(19) |
Fe21z6 | 0 | 0.0221(2) |
Fe21x7 | 0 | 0 |
Fe21y7 | 0 | 0 |
Fe21z7 | 0 | 0 |
Fe21x8 | 0 | 0 |
Fe21y8 | 0 | 0 |
Fe21z8 | 0 | 0 |
Fe21x9 | 0 | 0 |
Fe21y9 | 0 | 0 |
Fe21z9 | 0 | 0 |
Fe21x10 | 0 | 0 |
Fe21y10 | 0 | 0 |
Fe21z10 | 0 | 0 |
Fe21x11 | 0 | 0 |
Fe21y11 | 0 | 0 |
Fe21z11 | 0 | 0 |
Fe21x12 | 0 | 0.0028(2) |
Fe21y12 | 0 | -0.00881(15) |
Fe21z12 | 0 | -0.0117(3) |
Ti22x1 | 0 | -0.0013(7) |
Ti22y1 | 0 | 0.1565(4) |
Ti22z1 | 0 | -0.0646(5) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0014(3) |
Ti22y6 | 0 | 0.00972(19) |
Ti22z6 | 0 | 0.0221(2) |
Ti22x7 | 0 | 0 |
Ti22y7 | 0 | 0 |
Ti22z7 | 0 | 0 |
Ti22x8 | 0 | 0 |
Ti22y8 | 0 | 0 |
Ti22z8 | 0 | 0 |
Ti22x9 | 0 | 0 |
Ti22y9 | 0 | 0 |
Ti22z9 | 0 | 0 |
Ti22x10 | 0 | 0 |
Ti22y10 | 0 | 0 |
Ti22z10 | 0 | 0 |
Ti22x11 | 0 | 0 |
Ti22y11 | 0 | 0 |
Ti22z11 | 0 | 0 |
Ti22x12 | 0 | 0.0028(2) |
Ti22y12 | 0 | -0.00881(15) |
Ti22z12 | 0 | -0.0117(3) |
Fe22x1 | 0 | -0.0013(7) |
Fe22y1 | 0 | 0.1565(4) |
Fe22z1 | 0 | -0.0646(5) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0014(3) |
Fe22y6 | 0 | 0.00972(19) |
Fe22z6 | 0 | 0.0221(2) |
Fe22x7 | 0 | 0 |
Fe22y7 | 0 | 0 |
Fe22z7 | 0 | 0 |
Fe22x8 | 0 | 0 |
Fe22y8 | 0 | 0 |
Fe22z8 | 0 | 0 |
Fe22x9 | 0 | 0 |
Fe22y9 | 0 | 0 |
Fe22z9 | 0 | 0 |
Fe22x10 | 0 | 0 |
Fe22y10 | 0 | 0 |
Fe22z10 | 0 | 0 |
Fe22x11 | 0 | 0 |
Fe22y11 | 0 | 0 |
Fe22z11 | 0 | 0 |
Fe22x12 | 0 | 0.0028(2) |
Fe22y12 | 0 | -0.00881(15) |
Fe22z12 | 0 | -0.0117(3) |
Ti23x1 | 0 | -0.0013(7) |
Ti23y1 | 0 | 0.1565(4) |
Ti23z1 | 0 | -0.0646(5) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0014(3) |
Ti23y6 | 0 | 0.00972(19) |
Ti23z6 | 0 | 0.0221(2) |
Ti23x7 | 0 | 0 |
Ti23y7 | 0 | 0 |
Ti23z7 | 0 | 0 |
Ti23x8 | 0 | 0 |
Ti23y8 | 0 | 0 |
Ti23z8 | 0 | 0 |
Ti23x9 | 0 | 0 |
Ti23y9 | 0 | 0 |
Ti23z9 | 0 | 0 |
Ti23x10 | 0 | 0 |
Ti23y10 | 0 | 0 |
Ti23z10 | 0 | 0 |
Ti23x11 | 0 | 0 |
Ti23y11 | 0 | 0 |
Ti23z11 | 0 | 0 |
Ti23x12 | 0 | 0.0028(2) |
Ti23y12 | 0 | -0.00881(15) |
Ti23z12 | 0 | -0.0117(3) |
Fe23x1 | 0 | -0.0013(7) |
Fe23y1 | 0 | 0.1565(4) |
Fe23z1 | 0 | -0.0646(5) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0014(3) |
Fe23y6 | 0 | 0.00972(19) |
Fe23z6 | 0 | 0.0221(2) |
Fe23x7 | 0 | 0 |
Fe23y7 | 0 | 0 |
Fe23z7 | 0 | 0 |
Fe23x8 | 0 | 0 |
Fe23y8 | 0 | 0 |
Fe23z8 | 0 | 0 |
Fe23x9 | 0 | 0 |
Fe23y9 | 0 | 0 |
Fe23z9 | 0 | 0 |
Fe23x10 | 0 | 0 |
Fe23y10 | 0 | 0 |
Fe23z10 | 0 | 0 |
Fe23x11 | 0 | 0 |
Fe23y11 | 0 | 0 |
Fe23z11 | 0 | 0 |
Fe23x12 | 0 | 0.0028(2) |
Fe23y12 | 0 | -0.00881(15) |
Fe23z12 | 0 | -0.0117(3) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | 0.00007(10) |
La1 | y | 1 | 1 | 0.03822(4) |
La1 | z | 1 | 1 | 0.00045(6) |
La1 | x | 1 | 2 | 0.00016(3) |
La1 | y | 1 | 2 | -0.00062(4) |
La1 | z | 1 | 2 | 0.00053(4) |
O1 | x | 4 | 1 | 0.0001(5) |
O1 | y | 4 | 1 | 0.0226(6) |
O1 | z | 4 | 1 | -0.0098(5) |
O1 | x | 4 | 2 | 0.0004(3) |
O1 | y | 4 | 2 | 0.0081(5) |
O1 | z | 4 | 2 | 0.0052(6) |
O1 | x | 4 | 3 | 0.0000(7) |
O1 | y | 4 | 3 | -0.0058(8) |
O1 | z | 4 | 3 | 0.0052(8) |
O1 | x | 4 | 4 | 0.0003(4) |
O1 | y | 4 | 4 | -0.0062(6) |
O1 | z | 4 | 4 | -0.0014(6) |
O1 | x | 4 | 5 | -0.0001(8) |
O1 | y | 4 | 5 | 0.0095(10) |
O1 | z | 4 | 5 | 0.0039(10) |
O1 | x | 4 | 6 | 0 |
O1 | y | 4 | 6 | 0 |
O1 | z | 4 | 6 | 0 |
O2 | x | 5 | 1 | 0.0016(3) |
O2 | y | 5 | 1 | 0.0355(5) |
O2 | z | 5 | 1 | 0.0011(4) |
O2 | x | 5 | 2 | -0.0083(3) |
O2 | y | 5 | 2 | -0.0040(4) |
O2 | z | 5 | 2 | 0.0142(5) |
O2 | x | 5 | 3 | 0.0056(4) |
O2 | y | 5 | 3 | -0.0046(5) |
O2 | z | 5 | 3 | -0.0058(5) |
O2 | x | 5 | 4 | 0.0031(3) |
O2 | y | 5 | 4 | 0.0081(5) |
O2 | z | 5 | 4 | -0.0038(5) |
O2 | x | 5 | 5 | -0.0072(4) |
O2 | y | 5 | 5 | 0.0061(6) |
O2 | z | 5 | 5 | 0.0027(6) |
O2 | x | 5 | 6 | 0 |
O2 | y | 5 | 6 | 0 |
O2 | z | 5 | 6 | 0 |
O3 | x | 6 | 1 | -0.0019(3) |
O3 | y | 6 | 1 | 0.0374(4) |
O3 | z | 6 | 1 | 0.0011(4) |
O3 | x | 6 | 2 | 0.0061(3) |
O3 | y | 6 | 2 | 0.0025(4) |
O3 | z | 6 | 2 | 0.0167(5) |
O3 | x | 6 | 3 | -0.0058(4) |
O3 | y | 6 | 3 | -0.0034(5) |
O3 | z | 6 | 3 | -0.0061(5) |
O3 | x | 6 | 4 | -0.0013(3) |
O3 | y | 6 | 4 | 0.0044(5) |
O3 | z | 6 | 4 | -0.0042(5) |
O3 | x | 6 | 5 | 0.0068(4) |
O3 | y | 6 | 5 | 0.0047(6) |
O3 | z | 6 | 5 | 0.0026(6) |
O3 | x | 6 | 6 | 0 |
O3 | y | 6 | 6 | 0 |
O3 | z | 6 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00041(6) |
La1 | U22 | 1 | 1 | 0.00050(7) |
La1 | U33 | 1 | 1 | 0.00104(9) |
La1 | U12 | 1 | 1 | 0.00011(9) |
La1 | U13 | 1 | 1 | 0.00012(6) |
La1 | U23 | 1 | 1 | -0.00025(10) |
La1 | U11 | 1 | 2 | 0.00068(7) |
La1 | U22 | 1 | 2 | 0.00055(7) |
La1 | U33 | 1 | 2 | -0.00089(10) |
La1 | U12 | 1 | 2 | -0.00014(10) |
La1 | U13 | 1 | 2 | 0.00021(16) |
La1 | U23 | 1 | 2 | 0.00040(8) |
La1 | U11 | 1 | 3 | -0.00031(9) |
La1 | U22 | 1 | 3 | 0.00085(9) |
La1 | U33 | 1 | 3 | -0.00027(13) |
La1 | U12 | 1 | 3 | -0.00017(8) |
La1 | U13 | 1 | 3 | -0.00015(9) |
La1 | U23 | 1 | 3 | -0.00029(17) |
La1 | U11 | 1 | 4 | 0 |
La1 | U22 | 1 | 4 | 0 |
La1 | U33 | 1 | 4 | 0 |
La1 | U12 | 1 | 4 | 0 |
La1 | U13 | 1 | 4 | 0 |
La1 | U23 | 1 | 4 | 0 |
Structural Formula Sum: Fe0.571 La3.429 O11.429 Ti2.858 [ Help ]
Formula weight: 827.9 Da [ Help ]
Crystal system: monoclinic [ Help ]
Superspace group name: X21/b(αβ0)00 [ Help ]
Symmetry operations of the superspace group: (Show/hide table) [ Help ]
Operation code | Operation in algebraic form |
---|---|
1 | x1,x2,x3,x4 |
2 | -x1+1/4,-x2,x3+1/2,-x4+1/4 |
3 | -x1,-x2,-x3,-x4+1/2 |
4 | x1,x2+1/2,-x3+1/2,x4 |
5 | x1+3/4,x2+1/2,x3,x4+1/4 |
6 | -x1,-x2+1/2,x3+1/2,-x4+1/2 |
7 | -x1+3/4,-x2+1/2,-x3,-x4+3/4 |
8 | x1+3/4,x2,-x3+1/2,x4+1/4 |
9 | x1+1/2,x2,x3,x4+1/2 |
10 | -x1+3/4,-x2,x3+1/2,-x4+3/4 |
11 | -x1+1/2,-x2,-x3,-x4 |
12 | x1+1/2,x2+1/2,-x3+1/2,x4+1/2 |
13 | x1+1/4,x2+1/2,x3,x4+3/4 |
14 | -x1+1/2,-x2+1/2,x3+1/2,-x4 |
15 | -x1+1/4,-x2+1/2,-x3,-x4+1/4 |
16 | x1+1/4,x2,-x3+1/2,x4+3/4 |
a: 7.8379(18) Å [ Help ]
b: 5.2768(13) Å [ Help ]
c: 5.5545(14) Å [ Help ]
α: 90 ° [ Help ]
β: 90 ° [ Help ]
γ: 89.996(17) ° [ Help ]
Volume: 229.73(10) Å3 [ Help ]
Modulation dimension: 1 [ Help ]
Measured independent wave vectors: (Show/hide table) [ Help ]
Wave vector id | q_x | q_y | q_z |
---|---|---|---|
1 | 0.000000 | 0.071429 | 0.000000 |
Z: 1 [ Help ]
Cell measurement temperature: 350 K [ Help ]
μ: 18.866 mm-1 [ Help ]
Absorption correction type: numerical [ Help ]
Absorption correction remarks: SADABS (version 2008/1) [ Help ]
Minimum transmission factor: 0.3487 [ Help ]
Maximum transmission factor: 0.7477 [ Help ]
Total nb. of reflections: 12281 [ Help ]
Nb. of observed reflections: 11137 [ Help ]
Intense reflections threshold: I>3σ(I) [ Help ]
Refinement based on: F [ Help ]
R(obs): 0.0619 [ Help ]
wR(obs): 0.0811 [ Help ]
R(all): 0.0683 [ Help ]
wR(all): 0.0819 [ Help ]
S(all): 3.09 [ Help ]
S(obs): 3.21 [ Help ]
Nb. of reflections: 12281 [ Help ]
Nb. of parameters: 161 [ Help ]
Number of constraints: 8 [ Help ]
Weighting scheme: sigma [ Help ]
Weighting scheme remarks: w=1/(σ2(F)+0.0001F2) [ Help ]
Δ/σ(max): 0.0058 [ Help ]
Δ/σ(mean): 0.0006 [ Help ]
Δρ(max): 18.03 e_Å-3 [ Help ]
Δρ(min): -4.21 e_Å-3 [ Help ]
Extinction method: none [ Help ]
Average Structure: (Show/hide table) [ Help ]
Atom site label | Atom symbol | x | y | z | ADP type | Uiso/equiv | Symmetry multiplicity | Occupancy | Coords from (d)iffraction or (c)alculated | Coords restraints or constraints | Disordered cluster | Disordered group |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La1 | La | -0.00020(2) | -0.01692(4) | 0.00249(3) | Uani | 0.00860(6) | 16 | 0.1429 | d | ? | ? | ? |
La2 | La | -0.00162(10) | 0.29549(9) | -0.08944(14) | Uani | 0.00917(9) | 16 | 0.0357 | d | ? | ? | ? |
La3 | La | -0.00230(11) | -0.23433(11) | 0.05049(14) | Uani | 0.01581(13) | 16 | 0.0357 | d | ? | ? | ? |
Ti11 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00596(18) | 8 | 0.022(2) | d | ? | ? | ? |
Fe11 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00596(18) | 8 | 0.049(2) | d | ? | ? | ? |
Ti12 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00596(18) | 16 | 0.0280(10) | d | ? | ? | ? |
Fe12 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00596(18) | 16 | 0.0078(10) | d | ? | ? | ? |
Ti13 | Ti | 0.25 | 0 | 0.5 | Uani | 0.00596(18) | 16 | 0.0355(9) | d | ? | ? | ? |
Fe13 | Fe | 0.25 | 0 | 0.5 | Uani | 0.00596(18) | 16 | 0.0002(9) | d | ? | ? | ? |
Ti21 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00583(18) | 8 | 0.022(2) | d | ? | ? | ? |
Fe21 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00583(18) | 8 | 0.049(2) | d | ? | ? | ? |
Ti22 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00583(18) | 16 | 0.0277(10) | d | ? | ? | ? |
Fe22 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00583(18) | 16 | 0.0080(10) | d | ? | ? | ? |
Ti23 | Ti | 0.75 | 0 | 0.5 | Uani | 0.00583(18) | 16 | 0.0341(9) | d | ? | ? | ? |
Fe23 | Fe | 0.75 | 0 | 0.5 | Uani | 0.00583(18) | 16 | 0.0016(9) | d | ? | ? | ? |
O1 | O | -0.0005(3) | 0.0064(4) | 0.5558(5) | Uani | 0.0112(5) | 16 | 0.2143 | d | ? | ? | ? |
O2 | O | 0.2259(3) | 0.2154(4) | 0.2099(4) | Uani | 0.0103(5) | 16 | 0.25 | d | ? | ? | ? |
O3 | O | 0.7756(3) | 0.2090(4) | 0.2061(4) | Uani | 0.0098(5) | 16 | 0.25 | d | ? | ? | ? |
ADP components: (Show/hide table) [ Help ]
Atom site label | Atom site symbol | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|---|
La1 | La | 0.00496(10) | 0.01339(8) | 0.00745(13) | 0.00006(9) | -0.00025(13) | -0.00182(7) |
La2 | La | 0.00357(13) | 0.01779(15) | 0.00616(19) | -0.00013(18) | -0.00067(17) | -0.00226(14) |
La3 | La | 0.00384(15) | 0.0290(2) | 0.0145(3) | -0.0001(2) | -0.0002(2) | -0.00762(18) |
Ti11 | Ti | 0.0044(3) | 0.0095(2) | 0.0040(4) | -0.0021(5) | -0.0001(4) | 0.00011(19) |
Fe11 | Fe | 0.0044(3) | 0.0095(2) | 0.0040(4) | -0.0021(5) | -0.0001(4) | 0.00011(19) |
Ti12 | Ti | 0.0044(3) | 0.0095(2) | 0.0040(4) | -0.0021(5) | -0.0001(4) | 0.00011(19) |
Fe12 | Fe | 0.0044(3) | 0.0095(2) | 0.0040(4) | -0.0021(5) | -0.0001(4) | 0.00011(19) |
Ti13 | Ti | 0.0044(3) | 0.0095(2) | 0.0040(4) | -0.0021(5) | -0.0001(4) | 0.00011(19) |
Fe13 | Fe | 0.0044(3) | 0.0095(2) | 0.0040(4) | -0.0021(5) | -0.0001(4) | 0.00011(19) |
Ti21 | Ti | 0.0043(3) | 0.0093(2) | 0.0039(4) | -0.0022(5) | 0.0001(4) | 0.00073(19) |
Fe21 | Fe | 0.0043(3) | 0.0093(2) | 0.0039(4) | -0.0022(5) | 0.0001(4) | 0.00073(19) |
Ti22 | Ti | 0.0043(3) | 0.0093(2) | 0.0039(4) | -0.0022(5) | 0.0001(4) | 0.00073(19) |
Fe22 | Fe | 0.0043(3) | 0.0093(2) | 0.0039(4) | -0.0022(5) | 0.0001(4) | 0.00073(19) |
Ti23 | Ti | 0.0043(3) | 0.0093(2) | 0.0039(4) | -0.0022(5) | 0.0001(4) | 0.00073(19) |
Fe23 | Fe | 0.0043(3) | 0.0093(2) | 0.0039(4) | -0.0022(5) | 0.0001(4) | 0.00073(19) |
O1 | O | 0.0014(8) | 0.0201(9) | 0.0122(11) | 0.0005(8) | -0.0001(6) | 0.0000(7) |
O2 | O | 0.0109(11) | 0.0158(8) | 0.0043(9) | -0.0003(7) | 0.0007(7) | 0.0024(6) |
O3 | O | 0.0090(10) | 0.0156(8) | 0.0049(9) | 0.0001(6) | 0.0012(6) | 0.0030(6) |
Fourier Wave Vectors (explicit: q_x,q_y,q_z or coefficients: q_1,q_2,...): (Show/hide table) [ Help ]
Wave vector code | q_1 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | 10 |
11 | 11 |
12 | 12 |
Definition of ortho-harmonics in crenel intervals: (Show/hide table) [ Help ]
Ortho set id | Center (x0) | Width | Completeness |
---|---|---|---|
1 | 0.000000 | 0.142857 | 0.950000 |
2 | 0.110398 | 0.035714 | 0.950000 |
3 | -0.106031 | 0.035714 | 0.950000 |
4 | 0.000000 | 0.214286 | 0.950000 |
5 | 0.000000 | 0.250000 | 0.950000 |
6 | 0.000000 | 0.250000 | 0.950000 |
Occupation crenel coefficients: (Show/hide table) [ Help ]
Atom site label | Center (x0) | Width |
---|---|---|
La1 | 0 | 0.1429 |
La2 | 0.110398(6) | 0.0357 |
La3 | -0.106031(8) | 0.0357 |
Ti11 | 0 | 0.0714 |
Fe11 | 0 | 0.0714 |
Ti12 | 0.0536 | 0.0357 |
Fe12 | 0.0536 | 0.0357 |
Ti13 | 0.0893 | 0.0357 |
Fe13 | 0.0893 | 0.0357 |
Ti21 | 0 | 0.0714 |
Fe21 | 0 | 0.0714 |
Ti22 | 0.0536 | 0.0357 |
Fe22 | 0.0536 | 0.0357 |
Ti23 | 0.0893 | 0.0357 |
Fe23 | 0.0893 | 0.0357 |
O1 | 0 | 0.2143 |
O2 | 0 | 0.25 |
O3 | 0 | 0.25 |
Definition of the displacive (translational) Fourier series: (Show/hide table) [ Help ]
Modulation code | Atom site label | Displacement axis | Wave vector code |
---|---|---|---|
Ti11x1 | Ti11 | x | 1 |
Ti11y1 | Ti11 | y | 1 |
Ti11z1 | Ti11 | z | 1 |
Ti11x2 | Ti11 | x | 2 |
Ti11y2 | Ti11 | y | 2 |
Ti11z2 | Ti11 | z | 2 |
Ti11x3 | Ti11 | x | 3 |
Ti11y3 | Ti11 | y | 3 |
Ti11z3 | Ti11 | z | 3 |
Ti11x4 | Ti11 | x | 4 |
Ti11y4 | Ti11 | y | 4 |
Ti11z4 | Ti11 | z | 4 |
Ti11x5 | Ti11 | x | 5 |
Ti11y5 | Ti11 | y | 5 |
Ti11z5 | Ti11 | z | 5 |
Ti11x6 | Ti11 | x | 6 |
Ti11y6 | Ti11 | y | 6 |
Ti11z6 | Ti11 | z | 6 |
Ti11x7 | Ti11 | x | 7 |
Ti11y7 | Ti11 | y | 7 |
Ti11z7 | Ti11 | z | 7 |
Ti11x8 | Ti11 | x | 8 |
Ti11y8 | Ti11 | y | 8 |
Ti11z8 | Ti11 | z | 8 |
Ti11x9 | Ti11 | x | 9 |
Ti11y9 | Ti11 | y | 9 |
Ti11z9 | Ti11 | z | 9 |
Ti11x10 | Ti11 | x | 10 |
Ti11y10 | Ti11 | y | 10 |
Ti11z10 | Ti11 | z | 10 |
Ti11x11 | Ti11 | x | 11 |
Ti11y11 | Ti11 | y | 11 |
Ti11z11 | Ti11 | z | 11 |
Ti11x12 | Ti11 | x | 12 |
Ti11y12 | Ti11 | y | 12 |
Ti11z12 | Ti11 | z | 12 |
Fe11x1 | Fe11 | x | 1 |
Fe11y1 | Fe11 | y | 1 |
Fe11z1 | Fe11 | z | 1 |
Fe11x2 | Fe11 | x | 2 |
Fe11y2 | Fe11 | y | 2 |
Fe11z2 | Fe11 | z | 2 |
Fe11x3 | Fe11 | x | 3 |
Fe11y3 | Fe11 | y | 3 |
Fe11z3 | Fe11 | z | 3 |
Fe11x4 | Fe11 | x | 4 |
Fe11y4 | Fe11 | y | 4 |
Fe11z4 | Fe11 | z | 4 |
Fe11x5 | Fe11 | x | 5 |
Fe11y5 | Fe11 | y | 5 |
Fe11z5 | Fe11 | z | 5 |
Fe11x6 | Fe11 | x | 6 |
Fe11y6 | Fe11 | y | 6 |
Fe11z6 | Fe11 | z | 6 |
Fe11x7 | Fe11 | x | 7 |
Fe11y7 | Fe11 | y | 7 |
Fe11z7 | Fe11 | z | 7 |
Fe11x8 | Fe11 | x | 8 |
Fe11y8 | Fe11 | y | 8 |
Fe11z8 | Fe11 | z | 8 |
Fe11x9 | Fe11 | x | 9 |
Fe11y9 | Fe11 | y | 9 |
Fe11z9 | Fe11 | z | 9 |
Fe11x10 | Fe11 | x | 10 |
Fe11y10 | Fe11 | y | 10 |
Fe11z10 | Fe11 | z | 10 |
Fe11x11 | Fe11 | x | 11 |
Fe11y11 | Fe11 | y | 11 |
Fe11z11 | Fe11 | z | 11 |
Fe11x12 | Fe11 | x | 12 |
Fe11y12 | Fe11 | y | 12 |
Fe11z12 | Fe11 | z | 12 |
Ti12x1 | Ti12 | x | 1 |
Ti12y1 | Ti12 | y | 1 |
Ti12z1 | Ti12 | z | 1 |
Ti12x2 | Ti12 | x | 2 |
Ti12y2 | Ti12 | y | 2 |
Ti12z2 | Ti12 | z | 2 |
Ti12x3 | Ti12 | x | 3 |
Ti12y3 | Ti12 | y | 3 |
Ti12z3 | Ti12 | z | 3 |
Ti12x4 | Ti12 | x | 4 |
Ti12y4 | Ti12 | y | 4 |
Ti12z4 | Ti12 | z | 4 |
Ti12x5 | Ti12 | x | 5 |
Ti12y5 | Ti12 | y | 5 |
Ti12z5 | Ti12 | z | 5 |
Ti12x6 | Ti12 | x | 6 |
Ti12y6 | Ti12 | y | 6 |
Ti12z6 | Ti12 | z | 6 |
Ti12x7 | Ti12 | x | 7 |
Ti12y7 | Ti12 | y | 7 |
Ti12z7 | Ti12 | z | 7 |
Ti12x8 | Ti12 | x | 8 |
Ti12y8 | Ti12 | y | 8 |
Ti12z8 | Ti12 | z | 8 |
Ti12x9 | Ti12 | x | 9 |
Ti12y9 | Ti12 | y | 9 |
Ti12z9 | Ti12 | z | 9 |
Ti12x10 | Ti12 | x | 10 |
Ti12y10 | Ti12 | y | 10 |
Ti12z10 | Ti12 | z | 10 |
Ti12x11 | Ti12 | x | 11 |
Ti12y11 | Ti12 | y | 11 |
Ti12z11 | Ti12 | z | 11 |
Ti12x12 | Ti12 | x | 12 |
Ti12y12 | Ti12 | y | 12 |
Ti12z12 | Ti12 | z | 12 |
Fe12x1 | Fe12 | x | 1 |
Fe12y1 | Fe12 | y | 1 |
Fe12z1 | Fe12 | z | 1 |
Fe12x2 | Fe12 | x | 2 |
Fe12y2 | Fe12 | y | 2 |
Fe12z2 | Fe12 | z | 2 |
Fe12x3 | Fe12 | x | 3 |
Fe12y3 | Fe12 | y | 3 |
Fe12z3 | Fe12 | z | 3 |
Fe12x4 | Fe12 | x | 4 |
Fe12y4 | Fe12 | y | 4 |
Fe12z4 | Fe12 | z | 4 |
Fe12x5 | Fe12 | x | 5 |
Fe12y5 | Fe12 | y | 5 |
Fe12z5 | Fe12 | z | 5 |
Fe12x6 | Fe12 | x | 6 |
Fe12y6 | Fe12 | y | 6 |
Fe12z6 | Fe12 | z | 6 |
Fe12x7 | Fe12 | x | 7 |
Fe12y7 | Fe12 | y | 7 |
Fe12z7 | Fe12 | z | 7 |
Fe12x8 | Fe12 | x | 8 |
Fe12y8 | Fe12 | y | 8 |
Fe12z8 | Fe12 | z | 8 |
Fe12x9 | Fe12 | x | 9 |
Fe12y9 | Fe12 | y | 9 |
Fe12z9 | Fe12 | z | 9 |
Fe12x10 | Fe12 | x | 10 |
Fe12y10 | Fe12 | y | 10 |
Fe12z10 | Fe12 | z | 10 |
Fe12x11 | Fe12 | x | 11 |
Fe12y11 | Fe12 | y | 11 |
Fe12z11 | Fe12 | z | 11 |
Fe12x12 | Fe12 | x | 12 |
Fe12y12 | Fe12 | y | 12 |
Fe12z12 | Fe12 | z | 12 |
Ti13x1 | Ti13 | x | 1 |
Ti13y1 | Ti13 | y | 1 |
Ti13z1 | Ti13 | z | 1 |
Ti13x2 | Ti13 | x | 2 |
Ti13y2 | Ti13 | y | 2 |
Ti13z2 | Ti13 | z | 2 |
Ti13x3 | Ti13 | x | 3 |
Ti13y3 | Ti13 | y | 3 |
Ti13z3 | Ti13 | z | 3 |
Ti13x4 | Ti13 | x | 4 |
Ti13y4 | Ti13 | y | 4 |
Ti13z4 | Ti13 | z | 4 |
Ti13x5 | Ti13 | x | 5 |
Ti13y5 | Ti13 | y | 5 |
Ti13z5 | Ti13 | z | 5 |
Ti13x6 | Ti13 | x | 6 |
Ti13y6 | Ti13 | y | 6 |
Ti13z6 | Ti13 | z | 6 |
Ti13x7 | Ti13 | x | 7 |
Ti13y7 | Ti13 | y | 7 |
Ti13z7 | Ti13 | z | 7 |
Ti13x8 | Ti13 | x | 8 |
Ti13y8 | Ti13 | y | 8 |
Ti13z8 | Ti13 | z | 8 |
Ti13x9 | Ti13 | x | 9 |
Ti13y9 | Ti13 | y | 9 |
Ti13z9 | Ti13 | z | 9 |
Ti13x10 | Ti13 | x | 10 |
Ti13y10 | Ti13 | y | 10 |
Ti13z10 | Ti13 | z | 10 |
Ti13x11 | Ti13 | x | 11 |
Ti13y11 | Ti13 | y | 11 |
Ti13z11 | Ti13 | z | 11 |
Ti13x12 | Ti13 | x | 12 |
Ti13y12 | Ti13 | y | 12 |
Ti13z12 | Ti13 | z | 12 |
Fe13x1 | Fe13 | x | 1 |
Fe13y1 | Fe13 | y | 1 |
Fe13z1 | Fe13 | z | 1 |
Fe13x2 | Fe13 | x | 2 |
Fe13y2 | Fe13 | y | 2 |
Fe13z2 | Fe13 | z | 2 |
Fe13x3 | Fe13 | x | 3 |
Fe13y3 | Fe13 | y | 3 |
Fe13z3 | Fe13 | z | 3 |
Fe13x4 | Fe13 | x | 4 |
Fe13y4 | Fe13 | y | 4 |
Fe13z4 | Fe13 | z | 4 |
Fe13x5 | Fe13 | x | 5 |
Fe13y5 | Fe13 | y | 5 |
Fe13z5 | Fe13 | z | 5 |
Fe13x6 | Fe13 | x | 6 |
Fe13y6 | Fe13 | y | 6 |
Fe13z6 | Fe13 | z | 6 |
Fe13x7 | Fe13 | x | 7 |
Fe13y7 | Fe13 | y | 7 |
Fe13z7 | Fe13 | z | 7 |
Fe13x8 | Fe13 | x | 8 |
Fe13y8 | Fe13 | y | 8 |
Fe13z8 | Fe13 | z | 8 |
Fe13x9 | Fe13 | x | 9 |
Fe13y9 | Fe13 | y | 9 |
Fe13z9 | Fe13 | z | 9 |
Fe13x10 | Fe13 | x | 10 |
Fe13y10 | Fe13 | y | 10 |
Fe13z10 | Fe13 | z | 10 |
Fe13x11 | Fe13 | x | 11 |
Fe13y11 | Fe13 | y | 11 |
Fe13z11 | Fe13 | z | 11 |
Fe13x12 | Fe13 | x | 12 |
Fe13y12 | Fe13 | y | 12 |
Fe13z12 | Fe13 | z | 12 |
Ti21x1 | Ti21 | x | 1 |
Ti21y1 | Ti21 | y | 1 |
Ti21z1 | Ti21 | z | 1 |
Ti21x2 | Ti21 | x | 2 |
Ti21y2 | Ti21 | y | 2 |
Ti21z2 | Ti21 | z | 2 |
Ti21x3 | Ti21 | x | 3 |
Ti21y3 | Ti21 | y | 3 |
Ti21z3 | Ti21 | z | 3 |
Ti21x4 | Ti21 | x | 4 |
Ti21y4 | Ti21 | y | 4 |
Ti21z4 | Ti21 | z | 4 |
Ti21x5 | Ti21 | x | 5 |
Ti21y5 | Ti21 | y | 5 |
Ti21z5 | Ti21 | z | 5 |
Ti21x6 | Ti21 | x | 6 |
Ti21y6 | Ti21 | y | 6 |
Ti21z6 | Ti21 | z | 6 |
Ti21x7 | Ti21 | x | 7 |
Ti21y7 | Ti21 | y | 7 |
Ti21z7 | Ti21 | z | 7 |
Ti21x8 | Ti21 | x | 8 |
Ti21y8 | Ti21 | y | 8 |
Ti21z8 | Ti21 | z | 8 |
Ti21x9 | Ti21 | x | 9 |
Ti21y9 | Ti21 | y | 9 |
Ti21z9 | Ti21 | z | 9 |
Ti21x10 | Ti21 | x | 10 |
Ti21y10 | Ti21 | y | 10 |
Ti21z10 | Ti21 | z | 10 |
Ti21x11 | Ti21 | x | 11 |
Ti21y11 | Ti21 | y | 11 |
Ti21z11 | Ti21 | z | 11 |
Ti21x12 | Ti21 | x | 12 |
Ti21y12 | Ti21 | y | 12 |
Ti21z12 | Ti21 | z | 12 |
Fe21x1 | Fe21 | x | 1 |
Fe21y1 | Fe21 | y | 1 |
Fe21z1 | Fe21 | z | 1 |
Fe21x2 | Fe21 | x | 2 |
Fe21y2 | Fe21 | y | 2 |
Fe21z2 | Fe21 | z | 2 |
Fe21x3 | Fe21 | x | 3 |
Fe21y3 | Fe21 | y | 3 |
Fe21z3 | Fe21 | z | 3 |
Fe21x4 | Fe21 | x | 4 |
Fe21y4 | Fe21 | y | 4 |
Fe21z4 | Fe21 | z | 4 |
Fe21x5 | Fe21 | x | 5 |
Fe21y5 | Fe21 | y | 5 |
Fe21z5 | Fe21 | z | 5 |
Fe21x6 | Fe21 | x | 6 |
Fe21y6 | Fe21 | y | 6 |
Fe21z6 | Fe21 | z | 6 |
Fe21x7 | Fe21 | x | 7 |
Fe21y7 | Fe21 | y | 7 |
Fe21z7 | Fe21 | z | 7 |
Fe21x8 | Fe21 | x | 8 |
Fe21y8 | Fe21 | y | 8 |
Fe21z8 | Fe21 | z | 8 |
Fe21x9 | Fe21 | x | 9 |
Fe21y9 | Fe21 | y | 9 |
Fe21z9 | Fe21 | z | 9 |
Fe21x10 | Fe21 | x | 10 |
Fe21y10 | Fe21 | y | 10 |
Fe21z10 | Fe21 | z | 10 |
Fe21x11 | Fe21 | x | 11 |
Fe21y11 | Fe21 | y | 11 |
Fe21z11 | Fe21 | z | 11 |
Fe21x12 | Fe21 | x | 12 |
Fe21y12 | Fe21 | y | 12 |
Fe21z12 | Fe21 | z | 12 |
Ti22x1 | Ti22 | x | 1 |
Ti22y1 | Ti22 | y | 1 |
Ti22z1 | Ti22 | z | 1 |
Ti22x2 | Ti22 | x | 2 |
Ti22y2 | Ti22 | y | 2 |
Ti22z2 | Ti22 | z | 2 |
Ti22x3 | Ti22 | x | 3 |
Ti22y3 | Ti22 | y | 3 |
Ti22z3 | Ti22 | z | 3 |
Ti22x4 | Ti22 | x | 4 |
Ti22y4 | Ti22 | y | 4 |
Ti22z4 | Ti22 | z | 4 |
Ti22x5 | Ti22 | x | 5 |
Ti22y5 | Ti22 | y | 5 |
Ti22z5 | Ti22 | z | 5 |
Ti22x6 | Ti22 | x | 6 |
Ti22y6 | Ti22 | y | 6 |
Ti22z6 | Ti22 | z | 6 |
Ti22x7 | Ti22 | x | 7 |
Ti22y7 | Ti22 | y | 7 |
Ti22z7 | Ti22 | z | 7 |
Ti22x8 | Ti22 | x | 8 |
Ti22y8 | Ti22 | y | 8 |
Ti22z8 | Ti22 | z | 8 |
Ti22x9 | Ti22 | x | 9 |
Ti22y9 | Ti22 | y | 9 |
Ti22z9 | Ti22 | z | 9 |
Ti22x10 | Ti22 | x | 10 |
Ti22y10 | Ti22 | y | 10 |
Ti22z10 | Ti22 | z | 10 |
Ti22x11 | Ti22 | x | 11 |
Ti22y11 | Ti22 | y | 11 |
Ti22z11 | Ti22 | z | 11 |
Ti22x12 | Ti22 | x | 12 |
Ti22y12 | Ti22 | y | 12 |
Ti22z12 | Ti22 | z | 12 |
Fe22x1 | Fe22 | x | 1 |
Fe22y1 | Fe22 | y | 1 |
Fe22z1 | Fe22 | z | 1 |
Fe22x2 | Fe22 | x | 2 |
Fe22y2 | Fe22 | y | 2 |
Fe22z2 | Fe22 | z | 2 |
Fe22x3 | Fe22 | x | 3 |
Fe22y3 | Fe22 | y | 3 |
Fe22z3 | Fe22 | z | 3 |
Fe22x4 | Fe22 | x | 4 |
Fe22y4 | Fe22 | y | 4 |
Fe22z4 | Fe22 | z | 4 |
Fe22x5 | Fe22 | x | 5 |
Fe22y5 | Fe22 | y | 5 |
Fe22z5 | Fe22 | z | 5 |
Fe22x6 | Fe22 | x | 6 |
Fe22y6 | Fe22 | y | 6 |
Fe22z6 | Fe22 | z | 6 |
Fe22x7 | Fe22 | x | 7 |
Fe22y7 | Fe22 | y | 7 |
Fe22z7 | Fe22 | z | 7 |
Fe22x8 | Fe22 | x | 8 |
Fe22y8 | Fe22 | y | 8 |
Fe22z8 | Fe22 | z | 8 |
Fe22x9 | Fe22 | x | 9 |
Fe22y9 | Fe22 | y | 9 |
Fe22z9 | Fe22 | z | 9 |
Fe22x10 | Fe22 | x | 10 |
Fe22y10 | Fe22 | y | 10 |
Fe22z10 | Fe22 | z | 10 |
Fe22x11 | Fe22 | x | 11 |
Fe22y11 | Fe22 | y | 11 |
Fe22z11 | Fe22 | z | 11 |
Fe22x12 | Fe22 | x | 12 |
Fe22y12 | Fe22 | y | 12 |
Fe22z12 | Fe22 | z | 12 |
Ti23x1 | Ti23 | x | 1 |
Ti23y1 | Ti23 | y | 1 |
Ti23z1 | Ti23 | z | 1 |
Ti23x2 | Ti23 | x | 2 |
Ti23y2 | Ti23 | y | 2 |
Ti23z2 | Ti23 | z | 2 |
Ti23x3 | Ti23 | x | 3 |
Ti23y3 | Ti23 | y | 3 |
Ti23z3 | Ti23 | z | 3 |
Ti23x4 | Ti23 | x | 4 |
Ti23y4 | Ti23 | y | 4 |
Ti23z4 | Ti23 | z | 4 |
Ti23x5 | Ti23 | x | 5 |
Ti23y5 | Ti23 | y | 5 |
Ti23z5 | Ti23 | z | 5 |
Ti23x6 | Ti23 | x | 6 |
Ti23y6 | Ti23 | y | 6 |
Ti23z6 | Ti23 | z | 6 |
Ti23x7 | Ti23 | x | 7 |
Ti23y7 | Ti23 | y | 7 |
Ti23z7 | Ti23 | z | 7 |
Ti23x8 | Ti23 | x | 8 |
Ti23y8 | Ti23 | y | 8 |
Ti23z8 | Ti23 | z | 8 |
Ti23x9 | Ti23 | x | 9 |
Ti23y9 | Ti23 | y | 9 |
Ti23z9 | Ti23 | z | 9 |
Ti23x10 | Ti23 | x | 10 |
Ti23y10 | Ti23 | y | 10 |
Ti23z10 | Ti23 | z | 10 |
Ti23x11 | Ti23 | x | 11 |
Ti23y11 | Ti23 | y | 11 |
Ti23z11 | Ti23 | z | 11 |
Ti23x12 | Ti23 | x | 12 |
Ti23y12 | Ti23 | y | 12 |
Ti23z12 | Ti23 | z | 12 |
Fe23x1 | Fe23 | x | 1 |
Fe23y1 | Fe23 | y | 1 |
Fe23z1 | Fe23 | z | 1 |
Fe23x2 | Fe23 | x | 2 |
Fe23y2 | Fe23 | y | 2 |
Fe23z2 | Fe23 | z | 2 |
Fe23x3 | Fe23 | x | 3 |
Fe23y3 | Fe23 | y | 3 |
Fe23z3 | Fe23 | z | 3 |
Fe23x4 | Fe23 | x | 4 |
Fe23y4 | Fe23 | y | 4 |
Fe23z4 | Fe23 | z | 4 |
Fe23x5 | Fe23 | x | 5 |
Fe23y5 | Fe23 | y | 5 |
Fe23z5 | Fe23 | z | 5 |
Fe23x6 | Fe23 | x | 6 |
Fe23y6 | Fe23 | y | 6 |
Fe23z6 | Fe23 | z | 6 |
Fe23x7 | Fe23 | x | 7 |
Fe23y7 | Fe23 | y | 7 |
Fe23z7 | Fe23 | z | 7 |
Fe23x8 | Fe23 | x | 8 |
Fe23y8 | Fe23 | y | 8 |
Fe23z8 | Fe23 | z | 8 |
Fe23x9 | Fe23 | x | 9 |
Fe23y9 | Fe23 | y | 9 |
Fe23z9 | Fe23 | z | 9 |
Fe23x10 | Fe23 | x | 10 |
Fe23y10 | Fe23 | y | 10 |
Fe23z10 | Fe23 | z | 10 |
Fe23x11 | Fe23 | x | 11 |
Fe23y11 | Fe23 | y | 11 |
Fe23z11 | Fe23 | z | 11 |
Fe23x12 | Fe23 | x | 12 |
Fe23y12 | Fe23 | y | 12 |
Fe23z12 | Fe23 | z | 12 |
Displacive (translational) Fourier coefficients: (Show/hide table) [ Help ]
Modulation code | Cosine coefficient | Sine coefficient |
---|---|---|
Ti11x1 | 0 | -0.0070(7) |
Ti11y1 | 0 | 0.1431(4) |
Ti11z1 | 0 | -0.0612(5) |
Ti11x2 | 0 | 0 |
Ti11y2 | 0 | 0 |
Ti11z2 | 0 | 0 |
Ti11x3 | 0 | 0 |
Ti11y3 | 0 | 0 |
Ti11z3 | 0 | 0 |
Ti11x4 | 0 | 0 |
Ti11y4 | 0 | 0 |
Ti11z4 | 0 | 0 |
Ti11x5 | 0 | 0 |
Ti11y5 | 0 | 0 |
Ti11z5 | 0 | 0 |
Ti11x6 | 0 | 0.0007(4) |
Ti11y6 | 0 | 0.01125(19) |
Ti11z6 | 0 | 0.0226(2) |
Ti11x7 | 0 | 0 |
Ti11y7 | 0 | 0 |
Ti11z7 | 0 | 0 |
Ti11x8 | 0 | 0 |
Ti11y8 | 0 | 0 |
Ti11z8 | 0 | 0 |
Ti11x9 | 0 | 0 |
Ti11y9 | 0 | 0 |
Ti11z9 | 0 | 0 |
Ti11x10 | 0 | 0 |
Ti11y10 | 0 | 0 |
Ti11z10 | 0 | 0 |
Ti11x11 | 0 | 0 |
Ti11y11 | 0 | 0 |
Ti11z11 | 0 | 0 |
Ti11x12 | 0 | 0.0011(2) |
Ti11y12 | 0 | -0.00793(14) |
Ti11z12 | 0 | -0.0114(3) |
Fe11x1 | 0 | -0.0070(7) |
Fe11y1 | 0 | 0.1431(4) |
Fe11z1 | 0 | -0.0612(5) |
Fe11x2 | 0 | 0 |
Fe11y2 | 0 | 0 |
Fe11z2 | 0 | 0 |
Fe11x3 | 0 | 0 |
Fe11y3 | 0 | 0 |
Fe11z3 | 0 | 0 |
Fe11x4 | 0 | 0 |
Fe11y4 | 0 | 0 |
Fe11z4 | 0 | 0 |
Fe11x5 | 0 | 0 |
Fe11y5 | 0 | 0 |
Fe11z5 | 0 | 0 |
Fe11x6 | 0 | 0.0007(4) |
Fe11y6 | 0 | 0.01125(19) |
Fe11z6 | 0 | 0.0226(2) |
Fe11x7 | 0 | 0 |
Fe11y7 | 0 | 0 |
Fe11z7 | 0 | 0 |
Fe11x8 | 0 | 0 |
Fe11y8 | 0 | 0 |
Fe11z8 | 0 | 0 |
Fe11x9 | 0 | 0 |
Fe11y9 | 0 | 0 |
Fe11z9 | 0 | 0 |
Fe11x10 | 0 | 0 |
Fe11y10 | 0 | 0 |
Fe11z10 | 0 | 0 |
Fe11x11 | 0 | 0 |
Fe11y11 | 0 | 0 |
Fe11z11 | 0 | 0 |
Fe11x12 | 0 | 0.0011(2) |
Fe11y12 | 0 | -0.00793(14) |
Fe11z12 | 0 | -0.0114(3) |
Ti12x1 | 0 | -0.0070(7) |
Ti12y1 | 0 | 0.1431(4) |
Ti12z1 | 0 | -0.0612(5) |
Ti12x2 | 0 | 0 |
Ti12y2 | 0 | 0 |
Ti12z2 | 0 | 0 |
Ti12x3 | 0 | 0 |
Ti12y3 | 0 | 0 |
Ti12z3 | 0 | 0 |
Ti12x4 | 0 | 0 |
Ti12y4 | 0 | 0 |
Ti12z4 | 0 | 0 |
Ti12x5 | 0 | 0 |
Ti12y5 | 0 | 0 |
Ti12z5 | 0 | 0 |
Ti12x6 | 0 | 0.0007(4) |
Ti12y6 | 0 | 0.01125(19) |
Ti12z6 | 0 | 0.0226(2) |
Ti12x7 | 0 | 0 |
Ti12y7 | 0 | 0 |
Ti12z7 | 0 | 0 |
Ti12x8 | 0 | 0 |
Ti12y8 | 0 | 0 |
Ti12z8 | 0 | 0 |
Ti12x9 | 0 | 0 |
Ti12y9 | 0 | 0 |
Ti12z9 | 0 | 0 |
Ti12x10 | 0 | 0 |
Ti12y10 | 0 | 0 |
Ti12z10 | 0 | 0 |
Ti12x11 | 0 | 0 |
Ti12y11 | 0 | 0 |
Ti12z11 | 0 | 0 |
Ti12x12 | 0 | 0.0011(2) |
Ti12y12 | 0 | -0.00793(14) |
Ti12z12 | 0 | -0.0114(3) |
Fe12x1 | 0 | -0.0070(7) |
Fe12y1 | 0 | 0.1431(4) |
Fe12z1 | 0 | -0.0612(5) |
Fe12x2 | 0 | 0 |
Fe12y2 | 0 | 0 |
Fe12z2 | 0 | 0 |
Fe12x3 | 0 | 0 |
Fe12y3 | 0 | 0 |
Fe12z3 | 0 | 0 |
Fe12x4 | 0 | 0 |
Fe12y4 | 0 | 0 |
Fe12z4 | 0 | 0 |
Fe12x5 | 0 | 0 |
Fe12y5 | 0 | 0 |
Fe12z5 | 0 | 0 |
Fe12x6 | 0 | 0.0007(4) |
Fe12y6 | 0 | 0.01125(19) |
Fe12z6 | 0 | 0.0226(2) |
Fe12x7 | 0 | 0 |
Fe12y7 | 0 | 0 |
Fe12z7 | 0 | 0 |
Fe12x8 | 0 | 0 |
Fe12y8 | 0 | 0 |
Fe12z8 | 0 | 0 |
Fe12x9 | 0 | 0 |
Fe12y9 | 0 | 0 |
Fe12z9 | 0 | 0 |
Fe12x10 | 0 | 0 |
Fe12y10 | 0 | 0 |
Fe12z10 | 0 | 0 |
Fe12x11 | 0 | 0 |
Fe12y11 | 0 | 0 |
Fe12z11 | 0 | 0 |
Fe12x12 | 0 | 0.0011(2) |
Fe12y12 | 0 | -0.00793(14) |
Fe12z12 | 0 | -0.0114(3) |
Ti13x1 | 0 | -0.0070(7) |
Ti13y1 | 0 | 0.1431(4) |
Ti13z1 | 0 | -0.0612(5) |
Ti13x2 | 0 | 0 |
Ti13y2 | 0 | 0 |
Ti13z2 | 0 | 0 |
Ti13x3 | 0 | 0 |
Ti13y3 | 0 | 0 |
Ti13z3 | 0 | 0 |
Ti13x4 | 0 | 0 |
Ti13y4 | 0 | 0 |
Ti13z4 | 0 | 0 |
Ti13x5 | 0 | 0 |
Ti13y5 | 0 | 0 |
Ti13z5 | 0 | 0 |
Ti13x6 | 0 | 0.0007(4) |
Ti13y6 | 0 | 0.01125(19) |
Ti13z6 | 0 | 0.0226(2) |
Ti13x7 | 0 | 0 |
Ti13y7 | 0 | 0 |
Ti13z7 | 0 | 0 |
Ti13x8 | 0 | 0 |
Ti13y8 | 0 | 0 |
Ti13z8 | 0 | 0 |
Ti13x9 | 0 | 0 |
Ti13y9 | 0 | 0 |
Ti13z9 | 0 | 0 |
Ti13x10 | 0 | 0 |
Ti13y10 | 0 | 0 |
Ti13z10 | 0 | 0 |
Ti13x11 | 0 | 0 |
Ti13y11 | 0 | 0 |
Ti13z11 | 0 | 0 |
Ti13x12 | 0 | 0.0011(2) |
Ti13y12 | 0 | -0.00793(14) |
Ti13z12 | 0 | -0.0114(3) |
Fe13x1 | 0 | -0.0070(7) |
Fe13y1 | 0 | 0.1431(4) |
Fe13z1 | 0 | -0.0612(5) |
Fe13x2 | 0 | 0 |
Fe13y2 | 0 | 0 |
Fe13z2 | 0 | 0 |
Fe13x3 | 0 | 0 |
Fe13y3 | 0 | 0 |
Fe13z3 | 0 | 0 |
Fe13x4 | 0 | 0 |
Fe13y4 | 0 | 0 |
Fe13z4 | 0 | 0 |
Fe13x5 | 0 | 0 |
Fe13y5 | 0 | 0 |
Fe13z5 | 0 | 0 |
Fe13x6 | 0 | 0.0007(4) |
Fe13y6 | 0 | 0.01125(19) |
Fe13z6 | 0 | 0.0226(2) |
Fe13x7 | 0 | 0 |
Fe13y7 | 0 | 0 |
Fe13z7 | 0 | 0 |
Fe13x8 | 0 | 0 |
Fe13y8 | 0 | 0 |
Fe13z8 | 0 | 0 |
Fe13x9 | 0 | 0 |
Fe13y9 | 0 | 0 |
Fe13z9 | 0 | 0 |
Fe13x10 | 0 | 0 |
Fe13y10 | 0 | 0 |
Fe13z10 | 0 | 0 |
Fe13x11 | 0 | 0 |
Fe13y11 | 0 | 0 |
Fe13z11 | 0 | 0 |
Fe13x12 | 0 | 0.0011(2) |
Fe13y12 | 0 | -0.00793(14) |
Fe13z12 | 0 | -0.0114(3) |
Ti21x1 | 0 | -0.0021(7) |
Ti21y1 | 0 | 0.1559(4) |
Ti21z1 | 0 | -0.0646(5) |
Ti21x2 | 0 | 0 |
Ti21y2 | 0 | 0 |
Ti21z2 | 0 | 0 |
Ti21x3 | 0 | 0 |
Ti21y3 | 0 | 0 |
Ti21z3 | 0 | 0 |
Ti21x4 | 0 | 0 |
Ti21y4 | 0 | 0 |
Ti21z4 | 0 | 0 |
Ti21x5 | 0 | 0 |
Ti21y5 | 0 | 0 |
Ti21z5 | 0 | 0 |
Ti21x6 | 0 | -0.0013(3) |
Ti21y6 | 0 | 0.01001(19) |
Ti21z6 | 0 | 0.0224(2) |
Ti21x7 | 0 | 0 |
Ti21y7 | 0 | 0 |
Ti21z7 | 0 | 0 |
Ti21x8 | 0 | 0 |
Ti21y8 | 0 | 0 |
Ti21z8 | 0 | 0 |
Ti21x9 | 0 | 0 |
Ti21y9 | 0 | 0 |
Ti21z9 | 0 | 0 |
Ti21x10 | 0 | 0 |
Ti21y10 | 0 | 0 |
Ti21z10 | 0 | 0 |
Ti21x11 | 0 | 0 |
Ti21y11 | 0 | 0 |
Ti21z11 | 0 | 0 |
Ti21x12 | 0 | 0.0030(2) |
Ti21y12 | 0 | -0.00857(14) |
Ti21z12 | 0 | -0.0114(3) |
Fe21x1 | 0 | -0.0021(7) |
Fe21y1 | 0 | 0.1559(4) |
Fe21z1 | 0 | -0.0646(5) |
Fe21x2 | 0 | 0 |
Fe21y2 | 0 | 0 |
Fe21z2 | 0 | 0 |
Fe21x3 | 0 | 0 |
Fe21y3 | 0 | 0 |
Fe21z3 | 0 | 0 |
Fe21x4 | 0 | 0 |
Fe21y4 | 0 | 0 |
Fe21z4 | 0 | 0 |
Fe21x5 | 0 | 0 |
Fe21y5 | 0 | 0 |
Fe21z5 | 0 | 0 |
Fe21x6 | 0 | -0.0013(3) |
Fe21y6 | 0 | 0.01001(19) |
Fe21z6 | 0 | 0.0224(2) |
Fe21x7 | 0 | 0 |
Fe21y7 | 0 | 0 |
Fe21z7 | 0 | 0 |
Fe21x8 | 0 | 0 |
Fe21y8 | 0 | 0 |
Fe21z8 | 0 | 0 |
Fe21x9 | 0 | 0 |
Fe21y9 | 0 | 0 |
Fe21z9 | 0 | 0 |
Fe21x10 | 0 | 0 |
Fe21y10 | 0 | 0 |
Fe21z10 | 0 | 0 |
Fe21x11 | 0 | 0 |
Fe21y11 | 0 | 0 |
Fe21z11 | 0 | 0 |
Fe21x12 | 0 | 0.0030(2) |
Fe21y12 | 0 | -0.00857(14) |
Fe21z12 | 0 | -0.0114(3) |
Ti22x1 | 0 | -0.0021(7) |
Ti22y1 | 0 | 0.1559(4) |
Ti22z1 | 0 | -0.0646(5) |
Ti22x2 | 0 | 0 |
Ti22y2 | 0 | 0 |
Ti22z2 | 0 | 0 |
Ti22x3 | 0 | 0 |
Ti22y3 | 0 | 0 |
Ti22z3 | 0 | 0 |
Ti22x4 | 0 | 0 |
Ti22y4 | 0 | 0 |
Ti22z4 | 0 | 0 |
Ti22x5 | 0 | 0 |
Ti22y5 | 0 | 0 |
Ti22z5 | 0 | 0 |
Ti22x6 | 0 | -0.0013(3) |
Ti22y6 | 0 | 0.01001(19) |
Ti22z6 | 0 | 0.0224(2) |
Ti22x7 | 0 | 0 |
Ti22y7 | 0 | 0 |
Ti22z7 | 0 | 0 |
Ti22x8 | 0 | 0 |
Ti22y8 | 0 | 0 |
Ti22z8 | 0 | 0 |
Ti22x9 | 0 | 0 |
Ti22y9 | 0 | 0 |
Ti22z9 | 0 | 0 |
Ti22x10 | 0 | 0 |
Ti22y10 | 0 | 0 |
Ti22z10 | 0 | 0 |
Ti22x11 | 0 | 0 |
Ti22y11 | 0 | 0 |
Ti22z11 | 0 | 0 |
Ti22x12 | 0 | 0.0030(2) |
Ti22y12 | 0 | -0.00857(14) |
Ti22z12 | 0 | -0.0114(3) |
Fe22x1 | 0 | -0.0021(7) |
Fe22y1 | 0 | 0.1559(4) |
Fe22z1 | 0 | -0.0646(5) |
Fe22x2 | 0 | 0 |
Fe22y2 | 0 | 0 |
Fe22z2 | 0 | 0 |
Fe22x3 | 0 | 0 |
Fe22y3 | 0 | 0 |
Fe22z3 | 0 | 0 |
Fe22x4 | 0 | 0 |
Fe22y4 | 0 | 0 |
Fe22z4 | 0 | 0 |
Fe22x5 | 0 | 0 |
Fe22y5 | 0 | 0 |
Fe22z5 | 0 | 0 |
Fe22x6 | 0 | -0.0013(3) |
Fe22y6 | 0 | 0.01001(19) |
Fe22z6 | 0 | 0.0224(2) |
Fe22x7 | 0 | 0 |
Fe22y7 | 0 | 0 |
Fe22z7 | 0 | 0 |
Fe22x8 | 0 | 0 |
Fe22y8 | 0 | 0 |
Fe22z8 | 0 | 0 |
Fe22x9 | 0 | 0 |
Fe22y9 | 0 | 0 |
Fe22z9 | 0 | 0 |
Fe22x10 | 0 | 0 |
Fe22y10 | 0 | 0 |
Fe22z10 | 0 | 0 |
Fe22x11 | 0 | 0 |
Fe22y11 | 0 | 0 |
Fe22z11 | 0 | 0 |
Fe22x12 | 0 | 0.0030(2) |
Fe22y12 | 0 | -0.00857(14) |
Fe22z12 | 0 | -0.0114(3) |
Ti23x1 | 0 | -0.0021(7) |
Ti23y1 | 0 | 0.1559(4) |
Ti23z1 | 0 | -0.0646(5) |
Ti23x2 | 0 | 0 |
Ti23y2 | 0 | 0 |
Ti23z2 | 0 | 0 |
Ti23x3 | 0 | 0 |
Ti23y3 | 0 | 0 |
Ti23z3 | 0 | 0 |
Ti23x4 | 0 | 0 |
Ti23y4 | 0 | 0 |
Ti23z4 | 0 | 0 |
Ti23x5 | 0 | 0 |
Ti23y5 | 0 | 0 |
Ti23z5 | 0 | 0 |
Ti23x6 | 0 | -0.0013(3) |
Ti23y6 | 0 | 0.01001(19) |
Ti23z6 | 0 | 0.0224(2) |
Ti23x7 | 0 | 0 |
Ti23y7 | 0 | 0 |
Ti23z7 | 0 | 0 |
Ti23x8 | 0 | 0 |
Ti23y8 | 0 | 0 |
Ti23z8 | 0 | 0 |
Ti23x9 | 0 | 0 |
Ti23y9 | 0 | 0 |
Ti23z9 | 0 | 0 |
Ti23x10 | 0 | 0 |
Ti23y10 | 0 | 0 |
Ti23z10 | 0 | 0 |
Ti23x11 | 0 | 0 |
Ti23y11 | 0 | 0 |
Ti23z11 | 0 | 0 |
Ti23x12 | 0 | 0.0030(2) |
Ti23y12 | 0 | -0.00857(14) |
Ti23z12 | 0 | -0.0114(3) |
Fe23x1 | 0 | -0.0021(7) |
Fe23y1 | 0 | 0.1559(4) |
Fe23z1 | 0 | -0.0646(5) |
Fe23x2 | 0 | 0 |
Fe23y2 | 0 | 0 |
Fe23z2 | 0 | 0 |
Fe23x3 | 0 | 0 |
Fe23y3 | 0 | 0 |
Fe23z3 | 0 | 0 |
Fe23x4 | 0 | 0 |
Fe23y4 | 0 | 0 |
Fe23z4 | 0 | 0 |
Fe23x5 | 0 | 0 |
Fe23y5 | 0 | 0 |
Fe23z5 | 0 | 0 |
Fe23x6 | 0 | -0.0013(3) |
Fe23y6 | 0 | 0.01001(19) |
Fe23z6 | 0 | 0.0224(2) |
Fe23x7 | 0 | 0 |
Fe23y7 | 0 | 0 |
Fe23z7 | 0 | 0 |
Fe23x8 | 0 | 0 |
Fe23y8 | 0 | 0 |
Fe23z8 | 0 | 0 |
Fe23x9 | 0 | 0 |
Fe23y9 | 0 | 0 |
Fe23z9 | 0 | 0 |
Fe23x10 | 0 | 0 |
Fe23y10 | 0 | 0 |
Fe23z10 | 0 | 0 |
Fe23x11 | 0 | 0 |
Fe23y11 | 0 | 0 |
Fe23z11 | 0 | 0 |
Fe23x12 | 0 | 0.0030(2) |
Fe23y12 | 0 | -0.00857(14) |
Fe23z12 | 0 | -0.0114(3) |
Displacive (translational) ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Displacement axis | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | x | 1 | 1 | 0.00008(10) |
La1 | y | 1 | 1 | 0.03829(4) |
La1 | z | 1 | 1 | 0.00040(6) |
La1 | x | 1 | 2 | 0.00015(3) |
La1 | y | 1 | 2 | -0.00060(4) |
La1 | z | 1 | 2 | 0.00051(4) |
O1 | x | 4 | 1 | 0.0000(5) |
O1 | y | 4 | 1 | 0.0221(6) |
O1 | z | 4 | 1 | -0.0105(5) |
O1 | x | 4 | 2 | 0.0004(3) |
O1 | y | 4 | 2 | 0.0077(5) |
O1 | z | 4 | 2 | 0.0058(5) |
O1 | x | 4 | 3 | 0.0009(6) |
O1 | y | 4 | 3 | -0.0053(8) |
O1 | z | 4 | 3 | 0.0056(8) |
O1 | x | 4 | 4 | 0.0004(4) |
O1 | y | 4 | 4 | -0.0061(5) |
O1 | z | 4 | 4 | -0.0012(6) |
O1 | x | 4 | 5 | -0.0004(8) |
O1 | y | 4 | 5 | 0.0103(10) |
O1 | z | 4 | 5 | 0.0030(9) |
O1 | x | 4 | 6 | 0 |
O1 | y | 4 | 6 | 0 |
O1 | z | 4 | 6 | 0 |
O2 | x | 5 | 1 | 0.0016(3) |
O2 | y | 5 | 1 | 0.0345(4) |
O2 | z | 5 | 1 | 0.0013(4) |
O2 | x | 5 | 2 | -0.0086(4) |
O2 | y | 5 | 2 | -0.0040(4) |
O2 | z | 5 | 2 | 0.0142(5) |
O2 | x | 5 | 3 | 0.0056(4) |
O2 | y | 5 | 3 | -0.0047(5) |
O2 | z | 5 | 3 | -0.0062(5) |
O2 | x | 5 | 4 | 0.0029(3) |
O2 | y | 5 | 4 | 0.0083(5) |
O2 | z | 5 | 4 | -0.0040(5) |
O2 | x | 5 | 5 | -0.0074(4) |
O2 | y | 5 | 5 | 0.0065(6) |
O2 | z | 5 | 5 | 0.0030(5) |
O2 | x | 5 | 6 | 0 |
O2 | y | 5 | 6 | 0 |
O2 | z | 5 | 6 | 0 |
O3 | x | 6 | 1 | -0.0018(3) |
O3 | y | 6 | 1 | 0.0372(4) |
O3 | z | 6 | 1 | 0.0008(4) |
O3 | x | 6 | 2 | 0.0061(3) |
O3 | y | 6 | 2 | 0.0022(4) |
O3 | z | 6 | 2 | 0.0164(5) |
O3 | x | 6 | 3 | -0.0056(4) |
O3 | y | 6 | 3 | -0.0021(5) |
O3 | z | 6 | 3 | -0.0063(5) |
O3 | x | 6 | 4 | -0.0015(3) |
O3 | y | 6 | 4 | 0.0048(5) |
O3 | z | 6 | 4 | -0.0042(5) |
O3 | x | 6 | 5 | 0.0063(4) |
O3 | y | 6 | 5 | 0.0035(6) |
O3 | z | 6 | 5 | 0.0032(5) |
O3 | x | 6 | 6 | 0 |
O3 | y | 6 | 6 | 0 |
O3 | z | 6 | 6 | 0 |
ADP ortho-harmonics coefficients: (Show/hide table) [ Help ]
Atom site label | Tensor element | Ortho set id | Ortho set order | Ortho set coefficient |
---|---|---|---|---|
La1 | U11 | 1 | 1 | 0.00044(6) |
La1 | U22 | 1 | 1 | 0.00055(7) |
La1 | U33 | 1 | 1 | 0.00106(9) |
La1 | U12 | 1 | 1 | 0.00013(9) |
La1 | U13 | 1 | 1 | 0.00007(6) |
La1 | U23 | 1 | 1 | -0.00020(10) |
La1 | U11 | 1 | 2 | 0.00071(7) |
La1 | U22 | 1 | 2 | 0.00058(7) |
La1 | U33 | 1 | 2 | -0.00092(10) |
La1 | U12 | 1 | 2 | -0.00005(11) |
La1 | U13 | 1 | 2 | 0.00031(16) |
La1 | U23 | 1 | 2 | 0.00048(8) |
La1 | U11 | 1 | 3 | -0.00029(9) |
La1 | U22 | 1 | 3 | 0.00076(10) |
La1 | U33 | 1 | 3 | -0.00046(12) |
La1 | U12 | 1 | 3 | -0.00017(8) |
La1 | U13 | 1 | 3 | -0.00013(9) |
La1 | U23 | 1 | 3 | -0.00034(17) |
La1 | U11 | 1 | 4 | 0 |
La1 | U22 | 1 | 4 | 0 |
La1 | U33 | 1 | 4 | 0 |
La1 | U12 | 1 | 4 | 0 |
La1 | U13 | 1 | 4 | 0 |
La1 | U23 | 1 | 4 | 0 |