Summer School on Mathematical Crystallography

3-7 June 2019, Nancy (France)

International Union of CrystallographyCommision on Mathematical and Theoretical Crystallography

SYMMETRY DATABASES OF THE BILBAO CRYSTALLOGRAPHIC SERVER

Gemma de la Flor Martin Karlsruhe Institute of Technology

SYMMETRY DATABASES

Symmetry operations – matrix-column representation

Symmetry operations – geometric interpretation

General and special Wyckoff positions and site-symmetry

www.cryst.ehu.es

bilbao crystallographic server

Bilbao Crystallographic Server in forthcoming schools and workshops

News:

- New Article in Acta Cryst. A 05/2019: Gallego et al. "Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server." Acta Cryst. (2019) A75, 438-447.
- New Article in Nature 03/2019: Vergniory et al. "A complete catalogue of highquality topological materials" Nature (2019). 566, 480-485.

Updated versions of TENSOR and MTENSOR 03/2019: The programs give the general expression of tensor properties for a given point group and magnetic point group, respectively.

Contact us	About us	Publications	How to cite the server
	٤	Space-group symmet	гу
	Magneti	ic Symmetry and App	lications
	Group-Sub	group Relations of S	bace Groups
	Repre	sentations and Appli	cations
	Solid	l State Theory Applic	ations
		Structure Utilities	
	Subperiodic G	roups: Layer, R <u>od an</u>	d Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

Plane-group symmetry

Double point and space groups

www.cryst.ehu.es

bilbao crystallographic server

	Contact us	About us	Publications	How to cite the server			
N	Space-group symmetry						
A bilbao		Magneti	c Symmetry and Apr	lications			
	Space-group symmetry						
GENPOS	Generators an	d General Positi	ions of Space Group	S			
WYCKPOS	Wyckoff Positi	ons of Space Gr	oups				
HKLCOND	Reflection con	ditions of Space	Groups				
MAXSUB	Maximal Subg	roups of Space	Groups				
SERIES	Series of Maxi	mal Isomorphic	Subgroups of Space	Groups			
WYCKSETS	Equivalent Set	ts of Wyckoff Po	sitions				
NORMALIZER	Normalizers of	f Space Groups					
KVEC	The k-vector ty	ypes and Brilloui	n zones of Space G	roups			
SYMMETRY OPERATIONS	Geometric inte	erpretation of ma	trix column represer	tations of symmetry operations			
IDENTIFY GROUP	Identification of	of a Space Group	o from a set of gener	ators in an arbitrary setting			
03/2019: Vergniory et al. A							

complete catalogue of highquality topological materials" *Nature* (2019). 566, 480-485.

 Updated versions of TENSOR and MTENSOR 03/2019: The programs give the general expression of tensor properties for a given point group and magnetic point group, respectively.. Raman and Hyper-Raman scattering

Point-group symmetry

Plane-group symmetry

Double point and space groups

Crystallographic databases

International Tables for Crystallography

Crystallographic databases

GENERAL LAYOUT: LEFT-HAND PAGE

INTERNATIONAL TABLES for CRYSTALLOGRAPHY

Reflection conditions

no extra conditions no extra conditions no extra conditions hkl : h+k=2n

no extra conditions no extra conditions

General: no conditions

Special:

Po Mu Wy Site	sitio Iltipli ckofi e syn	ons city, f letter, nmetry		Coord	linates		GENPO	S
8	g	1	(1) x, y, z (5) x, \bar{y}, z	(2) \bar{x}, \bar{y}, z (6) \bar{x}, y, z	(3) ỹ (7) ỹ	x, z $x, \overline{x}, \overline{z}$	(4) y, \bar{x}, z (8) y, x, z	
4	f	. <i>m</i> .	$x, \frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}$,z	
4 4	e d	. m . m	x,0,z x,x,z	$\bar{x}, 0, z$ \bar{x}, \bar{x}, z	0, x, z \bar{x}, x, z	$0, \bar{x}$ $x, \bar{x},$,z z	
2	с	2 <i>m m</i> .	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$				
1 1	b a	4 m m 4 m m	$\frac{1}{2}, \frac{1}{2}, z$ 0,0,z			W	(CKPO	S

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)

Symmetry of special projections

Alon a' = a Origi	$g \begin{bmatrix} 001 \end{bmatrix} p 4mm$ a b' = b in at 0,0,z	Along [100] $p \ 1 m \ 1$ $\mathbf{a}' = \mathbf{b} \qquad \mathbf{b}' = \mathbf{c}$ Origin at $x, 0, 0$	Along [110] $p 1m1$ $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ $\mathbf{b}' = \mathbf{c}$ Origin at $x, x, 0$
Max	imal non-isomorphic su	lbgroups	
I	[2] P411(P4, 75) [2] P21m(Cmm2, 35) [2] P2m1(Pmm2, 25)	1; 2; 3; 4 1; 2; 7; 8 1; 2; 5; 6	MAXSUB
IIa IIb	none [2] $P4_2mc$ (c' = 2c) (105) [2] $F4mc$ (a' = 2a, b' = 2); [2] $P4cc$ (c' = 2c) (103); [2] $P4_2cm$ (c' 2b, c' = 2c) ($I4cm$, 108); [2] $F4mm$ (a' =	$= 2\mathbf{c}) (101); [2] C4md (\mathbf{a}' = 2\mathbf{a}, \mathbf{b}' = 2\mathbf{b}) (P4bm, 100);$ = 2 $\mathbf{a}, \mathbf{b}' = 2\mathbf{b}, \mathbf{c}' = 2\mathbf{c}) (I4mm, 107)$
Max IIc	imal isomorphic subgro [2] $P4mm(c' = 2c)$ (99);) SERIES	
Minimal non-isomorphic supergroups I [2] P4/mmm(123); [2] P4/nmm(129) II [2] I4mm(107)			MINSUP

P4mm

4 mm

Tetragonal

No. 99

 C_{4v}^1 P4mm

Patterson symmetry P4/mmm

Origin on 4mm

Asymmetric unit	$0 \le x \le \frac{1}{2};$	$0 \le y \le \frac{1}{2};$	$0 \le z \le 1;$	$x \le y$
-----------------	----------------------------	----------------------------	------------------	-----------

Symmetry operations						
(1) 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3) 4^+ 0,0,z	(4) 4^{-} 0,0,z			
(5) $m x, 0, z$		(7) $m x, \bar{x}, z$	(8) m x,x,z			

SYMMETRY OPERATIONS

_	0								
G	ener	ators sel	ected (1); t((1,0,0); t(0,1)	(,0); t(0,0)	0,1); (2);	; (3); (5)		
Po Mu Wy Sit	ositio altipli yckof e syn	ons icity, f letter, nmetry		Coord	linates	(GENPO	DS	
8	g	1	(1) <i>x</i> , <i>y</i> , <i>z</i> (5) <i>x</i> , <i>y</i> , <i>z</i>	(2) \bar{x}, \bar{y}, z (6) \bar{x}, y, z	(3) y (7) y	x, z, z x, z	(4) y, \bar{x}, z (8) y, x, z		
4	f	. <i>m</i> .	$x, \frac{1}{2}, z$	$\bar{x}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$			
4	е	. <i>m</i> .	<i>x</i> ,0, <i>z</i>	$\bar{x}, 0, z$	0, x, z	$0, \bar{x}, z$			
4	d	<i>m</i>	<i>x</i> , <i>x</i> , <i>z</i>	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z			
2	с	2 m m.	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$					
1	b	4 <i>m m</i>	$\frac{1}{2}, \frac{1}{2}, Z$			ŴY	CKPO	s	
1	а	4 <i>m m</i>	0,0,z						
Sy	mm	etry of s	pecial project	ions					
Al a' Or	ong = a igin	$\begin{bmatrix} 001 \end{bmatrix} p4m \\ b' = b \\ at 0, 0, z \end{bmatrix}$	1 m	A a C	long $\begin{bmatrix} 100 \\ t = \mathbf{b} \end{bmatrix}$ Drigin at x ,	$\begin{bmatrix} p \ 1 m \ 1 \\ \mathbf{b}' = \mathbf{c} \\ 0, 0 \end{bmatrix}$			Along [110] p 1 n $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ Origin at $x, x, 0$
M I II	axin a	nal non-i [2] P411 [2] P21m [2] P2m1 none	somorphic su (P4, 75) (Cmm2, 35) (Pmm2, 25)	bgroups 1; 2; 3; 4 1; 2; 7; 8 1; 2; 5; 6					
TT	L	101.04	() (105)	101 D 4 (22 121 0		(101)	101.04 101 0

[2] P4, mc(c' = 2c)(105); [2] P4cc(c' = 2c)(103); [2] P4, cm(c' = 2c)(101); [2] C4md(a' = 2a, b' = 2b)(P4bm, 100); IIb [2] F 4mc (a' = 2a, b' = 2b, c' = 2c) (I 4cm, 108); [2] F 4mm (a' = 2a, b' = 2b, c' = 2c) (I 4mm, 107)

Maximal isomorphic subgroups of lowest index

[2] $P4mm(\mathbf{c}' = 2\mathbf{c})$ (99); [2] $C4mm(\mathbf{a}' = 2\mathbf{a}, \mathbf{b}' = 2\mathbf{b})$ (P4mm, 99) IIc

Minimal non-isomorphic supergroups

[2] *P*4/*mmm*(123); [2] *P*4/*nmm*(129) I Π

[2] I4mm (107)

HKLCOND

Reflection conditions
General:
no conditions
Special:
no extra conditions
no extra conditions
no extra conditions
hkl: $h+k=2n$
no extra conditions
no extra conditions

m1 $\mathbf{b}' = \mathbf{c}$

SERIES

MINSUP

MAXSUB

SYMMETRY OPERATIONS

MATRIX-COLUMN REPRESENTATION

Symmetry operations

 Symmetry operations

 (1) 1
 (2) 2 0,0,z

(3) m x, 0, z (4) m 0, y, z

Symmetry operations

GENPOS <u>http://www.cryst.ehu.es/cryst/get_gen.html</u>

Generators and General Positions

Space group number

How to select the group

The space groups are specified by their sequential number as given in the *International Tables for Crystallography*, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

The available crystallographic data refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings.

To get the data in any Non-conventional setting it is necessary to specify the corresponding transformation that relates the non-conventional to the standard/default setting of the space group.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

If you are interested in other publications related to Bilbao Crystallographic Server, click here

 Please, enter the sequential number of group as given in the
 32

 International Tables for Crystallography, Vol. A
 32

 Show:
 Generators only on All General Positions on All General Positions on All General Positions on All General Positions on All Setting

Table of Space Group Symbols

No space group has been selected by now.

Click over the group name to see the group generators/general positions

The program you want to use works ONLY with the default choice for the group setting

1	<i>P</i> 1	2	<i>P</i> -1	3	<i>P</i> 2	4	<i>P</i> 2 ₁	5	C2
6	Pm	7	Pc	8	Cm	9	Сс	10	P2/m
11	P2 ₁ /m	12	C2/m	13	P2/c	14	P21/c	15	C2/c
16	P222	17	P222 ₁	18	<i>P</i> 2 ₁ 2 ₁ 2	19	<i>P</i> 2 ₁ 2 ₁ 2 ₁	20	C222 ₁
21	C222	22	F222	23	1222	24	<i>I</i> 2 ₁ 2 ₁ 2 ₁	25	Pmm2
26	Pmc2 ₁	27	Pcc2	28	Pma2	29	Pca2 ₁	30	Pnc2
31	Pmn2 ₁	32	Pba2	33	Pna2 ₁	34	Pnn2	35	Cmm2
36	Cmc2 ₁	37	Ccc2	38	Amm2	39	Aem2	40	Ama2
41	Aea2	42	Fmm2	43	Fdd2	44	Imm2	45	lba2
46	Ima2	47	Pmmm	48	Pnnn	49	Pccm	50	Pban
51	Pmma	52	Pnna	53	Pmna	54	Pcca	55	Pbam
56	Pccn	57	Pbcm	58	Pnnm	59	Pmmn	60	Pbcn

GENPOS http://www.cryst.ehu.es/cryst/get_gen.html

Generators and General Positions

Please, enter the sequential number of group as given in the

Space group number

How to select the group

The space groups are specified by their sequential number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

The available crystallographic data refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings.

To get the data in any Non-conventional setting it is necessary to specify the corresponding transformation that relates the non-conventional

to the standard/default group.

Standard (default) Choices for the Space Group Settings

If you are using this program in The default choices for the standard (default) settings of the space groups are: please cite it in the following fo

Arovo, et. al. Zeitschrift fuer K 1, 15-2

- *unique axis b (cell choice 1)* for space groups within the monoclinic system.
- obverse triple hexagonal unit cell for R space groups.
- the origin choice two inversion center at (0,0,0) for the centrosymmetric space groups for which there are two origin choices, within the orthorhombic, tetragonal and cubic systems.

If you are interested in other p Crystallographic Server, click h

Standard/Default Setting Non Conventional Setting

GENPOS <u>http://www.cryst.ehu.es/cryst/get_gen.html</u>

Generators and General Positions

Space group number

How to select the group

The space groups are specified by their sequential number as given in the *International Tables for Crystallography*, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

The available crystallographic data refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings.

To get the data in any Non-conventional setting it is necessary to specify the corresponding transformation that relates the non-conventional to the standard/default setting of the space group.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

If you are interested in other publications related to Bilbao Crystallographic Server, click here

GENPOS <u>http://www.cryst.ehu.es/cryst/get_gen.html</u>

Generators and General Positions

Space group number

How to select the group

The space groups are specified by their sequential number as given in the *International Tables for Crystallography*, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

The available crystallographic data refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings.

To get the data in any Non-conventional setting it is necessary to specify the corresponding transformation that relates the non-conventional to the standard/default setting of the space group.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

If you are interested in other publications related to Bilbao Crystallographic Server, click here

Example GENPOS: Space group Pba2 (No. 32)

Seitz Symbol for Symmetry Operations

Seitz symbols { **R** | **t** }

short-hand descriptions of the matrix-column presentations of the symmetry operations of the space groups

• rotation part R

specify the type and the order of the symmetry operation

orientation of the symmetry element by the direction of the axis for rotations and rotoinversions, or the direction of the normal to reflection planes

1 and 1 m 2, 3, 4 and 6 3, 4 and 6 identity and inversion reflections rotations rotoinversions

translation part t

Translation parts of the coordinate triplets of the *General position* block

Seitz symbols for Symmetry Operations

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry Coordinates

 $P2_{1}/c$

No. 14

The geometric descriptions given in the Symmetry Operations block in ITA are:

(1) 1 (2)
$$2(0, \frac{1}{2}, 0)$$
 0, $y, \frac{1}{4}$ (3) $\overline{1}$ 0, 0, 0 (4) $c x, \frac{1}{4}, z$

The Seitz notation are given as

(1) {1|0} (2) {2₀₁₀|0, $\frac{1}{2}$, $\frac{1}{2}$ } (3) { $\overline{1}$ |0} (4) { m_{010} |0, $\frac{1}{2}$, $\frac{1}{2}$ }

Seitz Symbol for Symmetry Operations

Example

Seitz symbols for symmetry operations of rhombohedral, hexagonal and trigonal crystal systems

ITA de	0-14-			
No.	Coordinate triplet	Туре	Orientation	symbol
1	<i>x</i> , <i>y</i> , <i>z</i>	1		1
2	z, x, y	3+	<i>x</i> , <i>x</i> , <i>x</i>	3+111
3	<i>y</i> , <i>z</i> , <i>x</i>	3-	<i>x</i> , <i>x</i> , <i>x</i>	3^{-}_{111}
4	$\bar{z}, \bar{y}, \bar{x}$	2	$\bar{x}, 0, x$	$2_{\overline{1}01}$
5	$\bar{y}, \bar{x}, \bar{z}$	2	$x, \bar{x}, 0$	$2_{1\overline{1}0}$
6	$\bar{x}, \bar{z}, \bar{y}$	2	$0, y, \bar{y}$	$2_{01\overline{1}}$
7	$\bar{x}, \bar{y}, \bar{z}$	ī		ī
8	$\bar{z}, \bar{x}, \bar{y}$	3 +	<i>x</i> , <i>x</i> , <i>x</i>	$\bar{3}^{+}_{111}$
9	$\bar{y}, \bar{z}, \bar{x}$	3 -	x, x, x	$\bar{3}_{111}^{-}$
10	z, y, x	m	<i>x</i> , <i>y</i> , <i>x</i>	$m_{ar{1}01}$
11	<i>y</i> , <i>x</i> , <i>z</i>	m	<i>x</i> , <i>x</i> , <i>z</i>	$m_{1\overline{1}0}$
12	x, z, y	m	<i>x</i> , <i>y</i> , <i>y</i>	$m_{01\overline{1}}$

ITA description					
No.	Coordinate triplet	Туре	Orientation	symbol	
1	<i>x</i> , <i>y</i> , <i>z</i>	1		1	
2	$\bar{y}, x - y, z$	3+	0, 0, <i>z</i>	3^+_{001}	
3	$\bar{x} + y, \bar{x}, z$	3-	0, 0, <i>z</i>	3^{-}_{001}	
4	\bar{x}, \bar{y}, z	2	0, 0, <i>z</i>	2 ₀₀₁	
5	$y, \bar{x} + y, z$	6-	0, 0, <i>z</i>	6^{-}_{001}	
6	x-y, x, z	6+	0, 0, <i>z</i>	6 ₀₀₁	
7	y, x, \overline{z}	2	x, x, 0	2 ₁₁₀	
8	$x-y, \bar{y}, \bar{z}$	2	<i>x</i> , 0, 0	2 ₁₀₀	
9	$\bar{x}, \bar{x} + y, \bar{z}$	2	0, y, 0	2 ₀₁₀	
10	$\bar{y}, \bar{x}, \bar{z}$	2	$x, \bar{x}, 0$	$2_{1\bar{1}0}$	
11	$\bar{x} + y, y, \bar{z}$	2	x, 2x, 0	2 ₁₂₀	
12	$x, x-y, \overline{z}$	2	2x, x, 0	2 ₂₁₀	
13	$\bar{x}, \bar{y}, \bar{z}$	ī		ī	
14	$y, \bar{x} + y, \bar{z}$	$\bar{3}^{+}$	0, 0, <i>z</i>	$\bar{3}^{+}_{001}$	
15	$x-y, x, \overline{z}$	<u>3</u> -	0, 0, <i>z</i>	$\bar{3}_{001}^{-}$	
16	x, y, \overline{z}	m	x, y, 0	<i>m</i> ₀₀₁	
17	$\bar{y}, x-y, \bar{z}$	ō -	0, 0, <i>z</i>	$\bar{6}^{-}_{001}$	
18	$\bar{x} + y, \bar{x}, \bar{z}$	$\bar{6}^+$	0, 0, <i>z</i>	$\bar{6}^{+}_{001}$	
19	\bar{y}, \bar{x}, z	m	x, \bar{x}, z	m_{110}	
20	$\bar{x} + y, y, z$	m	x, 2x, z	m_{100}	
21	x, x-y, z	m	2x, x, z	m_{010}	
22	y, x, z	m	<i>x</i> , <i>x</i> , <i>z</i>	$m_{1\overline{1}0}$	
23	$x-y, \bar{y}, z$	m	<i>x</i> , 0, <i>z</i>	m_{120}	
24	$\bar{x}, \bar{x} + y, z$	m	0, y, z	m_{210}	

Glazer et al. Acta Cryst. (2014). A70, 300-302

Example: Space group Pba2 (No. 32)

SYMMETRY OPERATIONS

GEOMETRIC INTERPRETATION

Rotational part (W)

1. Type of isometry

- 2. Axis or normal direction u $W u = \pm u$
 - 2.1 Rotations $Y(W) = W^{n-1} + W^{n-2} + \cdots + W + I$ 2.2 RotoinversionsY(-W)2.3 ReflectionsY(-W) = -W + I
- 3. <u>Sense of rotation</u> $\mathbf{Z} = [\mathbf{u} | \mathbf{x} | \det(\mathbf{W}) \mathbf{W} \cdot \mathbf{x}]$

Translational part (w)

4. Intrinsic translation

4.1 Screw vector
$$\mathbf{w}_g = \frac{1}{n} (\mathbf{Y} \cdot \mathbf{w})$$

4.2 Reflection plane
$$\mathbf{w}_g = \frac{1}{2}(\mathbf{W} + \mathbf{I})$$

5. Location symmetry element

5.1
$$\mathbf{w}_g = 0$$
 $(\mathbf{W}, \mathbf{w})\mathbf{x}_F = \mathbf{x}_F$

5.2
$$\mathbf{w}_g \neq 0$$
 $(\mathbf{W}, \mathbf{w}_l)\mathbf{x}_F = \mathbf{x}_F$ where $\mathbf{w}_l = \mathbf{w} - \mathbf{w}_g$

la-3d (No. 230)

$$\mathbf{y+3/4,x+1/4,z+1/4} \qquad \mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}; \ \mathbf{w} = \begin{pmatrix} 3/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$

la-3d (No. 230) y+3/4,x+1/4,z+1/4 $W = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} 3/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$

Determine the type of isometry:

$$det(\mathbf{W}) = 1; tr(\mathbf{W}) = -1$$

2-fold rotation

Ia-3d (No. 230)
$$y+3/4,x+1/4,z+1/4$$
2-fold rotation $W = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}$ $W = \begin{pmatrix} 3/4 \\ 1/4 \\ 1/4 \end{pmatrix}$

Determine the direction of the rotation axis calculating the matrix Y(W)

$$\mathbf{Y}(\mathbf{W}) = \mathbf{W}^{n-1} + \mathbf{W}^{n-2} + \dots + \mathbf{W} + \mathbf{I} \qquad \qquad \mathbf{N} = \mathbf{Y}(\mathbf{W}) = \mathbf{W} + \mathbf{I}$$

$$\mathbf{Y}(\mathbf{W}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The direction of the rotation axis with respect to the body centred cubic basis is given by the non-zero columns, $\mathbf{u} = (1,1,0)$

la-3d (No. 230)

y+3/4,x+1/4,z+1/4
$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}; \mathbf{w} = \begin{pmatrix} 3/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$

u=(1,1,0)

The intrinsic part is calculated:

$$\mathbf{w}_{g} = \frac{1}{n} (\mathbf{Y} \cdot \mathbf{w}) \qquad \mathbf{w}_{g} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3/4 \\ 1/4 \\ 1/4 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$$
$$\mathbf{w}_{g} \neq 0$$
the symmetry operation is a screw rotation

la-3d (No. 230)

y+3/4,x+1/4,z+1/4
$$W = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}$$
; $w = \begin{pmatrix} 3/4 \\ 1/4 \\ 1/4 \end{pmatrix}$
u=(1,1,0)
Screw rotation wg=(1/2,1/2,0)

The location of the screw axis is calculated:

$$\mathbf{w}_{g} \neq 0 \qquad (\mathbf{W}, \mathbf{w}_{l}) \mathbf{x}_{F} = \begin{pmatrix} 0 & 1 & 0 & 1/4 \\ 1 & 0 & 0 & -1/4 \\ 0 & 0 & \overline{1} & 1/4 \end{pmatrix} \begin{pmatrix} x_{F} \\ y_{F} \\ z_{F} \end{pmatrix} = \begin{pmatrix} x_{F} \\ y_{F} \\ z_{F} \end{pmatrix}$$

 $x_F = y_F + 1/4; \quad y_F = x_F - 1/4; \quad -z_F + 1/4 = z_F \Rightarrow z_F = 1/8$

la-3d (No. 230)

$$\mathbf{y+3/4,x+1/4,z+1/4} \qquad \mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}; \ \mathbf{w} = \begin{pmatrix} 3/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$

The geometric interpretation of the symmetry operation is:

$$2(1/2, 1/2, 0)$$
 $x, x - 1/4, 1/8$ Location of the symmetry element screw component

SYMMETY OPERATION

Sy

Crystallography, Vol. A. criteria and in Seitz notation.

http://www.cryst.ehu.es/cryst/matrices.html

Geometric Interpretation of Matrix Column Representation of Symmetry Operation

Symmetry Operation			
This program calculates the geometric interpretation of matrix column representation of symmetry operation for a given crystal system or space group.	Or enter the sequential number of <i>Tables for Crystallography</i> , Vol. A	choose it 230	
Input:			
i) The crystal system or the space group number.			
 ii) The matrix column representation of symmetry operation. 	Introduce the matrix-column repres	sentation of the symmetry operation 🎱 in:	
The program is able to calculate the geometrical interpretation refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings.	Coordinate triplets	y+3/4,x+1/4,-z+1/4	
If you want to work on a non conventional setting click on Non conventional setting , this will show you a form where you have to introduce the transformation matrix relating the conventional setting of the group you have chosen with the non conventional one you are interested in.	• Or in matrix form	Rotational part 1 0 0 0 1 0 0 0 1	Translational part 0 0 0 0
Output: We obtain the geometric interpretation of the symmetry operation according to the <i>International Tables for</i>	Standard/Default Setting	Non Conventional Setting	ITA Settings

SYMMETY OPERATION

We obtain the geometric interpretation of the symmetry operation according to the International Tables for Crystallography, Vol. A. criteria and in Seitz notation.

Sym

http://www.cryst.ehu.es/cryst/matrices.html

Geometric Interpretation of Matrix Column Representation of Symmetry Operation

Symmetry Operation		
This program calculates the geometric interpretation of matrix column representation of symmetry operation for a given crystal system or space group.	Or enter the sequential number of group as given in the <i>Internat</i> <i>Tables for Crystallography</i> , Vol. A	tional choose it 230
Input:		
i) The crystal system or the space group number.		
ii) The matrix column representation of symmetry operation.	Introduce the matrix-column representation of the symmetry ope	eration 🥝 in:
The program is able to calculate the geometrical interpretation refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings.	• Coordinate triplets	/4
If you want to work on a non conventional setting click on Non conventional setting , this will show you a form where you have to introduce the transformation matrix relating the conventional setting of the group you have chosen with the non conventional one you are interested in.	Or in matrix form Control (1) Con	t Translational part 0 0 0 0 0
Output:		

(x y z) form Matrix form			Symmetry Operation					
(x,y,z) 101111	Matrix Torm					ITA	Seitz 🚱	
y+3/4,x+1/4,-z+1/4	(0 1 0	1 0 0	0 0 -1	$\binom{3/4}{1/4}{1/4}$	2 (1/2,1/2,0) x,x-1/4,1/8	{ 2 ₁₁₀ 3/4 1/4 1/4 }	

- (a) Construct the matrix-column pairs (**W**,**w**) of the following coordinate triplets:
 - (1) x, y, z (3) -x,-y,-z (4) x, -y+1/2, z+1/2 (4) x, -y+1/2, z+1/2

(b) Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b (type of operation, glide/screw component, location of the symmetry operation).

(c) Use the program SYMMETRY OPERATIONS for the geometric interpretation of the matrix-column pairs of the symmetry operations.

(a) Characterize geometrically the matrix-column pairs listed under *General position* of the space group *P4mm* in *ITA*.

(b) Consider the diagram of the symmetry elements of *P4mm*. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram.

(c) Compare your results with the results of the program SYMMETRY OPERATIONS

GENERAL AND SPECIAL WYCKOFF POSITONS SITE-SYMMETRY

General and special positions

$$G(X_0) = \{ (\mathbf{W}, \mathbf{w}) X_0, (\mathbf{W}, \mathbf{w}) \in G \}$$

Site-symmetry groups: oriented symbols

Example: P4mm (No. 99)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)

Positions

Coordinates

Multiplicity, Wyckoff letter, Site symmetry

Multiplicity

Wyckoff letter

Site-symmetry

8	g	1	(1) x, y, z (5) x, \bar{y}, z	(2) \bar{x}, \bar{y}, z (6) \bar{x}, y, z	(3) <i>y</i> (7) <i>y</i>	,x,z $,\overline{x},z$	(4) y, \bar{x}, z (8) y, x, z
4	f	. <i>m</i> .	$X, \frac{1}{2}, Z$	$\bar{X}, rac{1}{2}, Z$	$\frac{1}{2}, X, Z$	$\frac{1}{2}, \bar{x}, z$	
4	е	. <i>m</i> .	<i>x</i> ,0, <i>z</i>	$\bar{x}, 0, z$	0, x, z	$0, \bar{x}, z$	
4	d	<i>m</i>	<i>x</i> , <i>x</i> , <i>z</i>	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z	
2	с	2 <i>m m</i> .	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$			
1	b	4 <i>m m</i>	$\frac{1}{2}, \frac{1}{2}, Z$				
1	а	4 <i>m m</i>	0,0,z				

Site-symmetry group

Determine the site-symmetry group for the WP 2i (x,0,0)

General Positions of the Group P222 (No. 16)

Click here to get the general positions in text format

No	(x) (7) form	Matrix form	Symmet	ry operation	
NO.	(x,y,z) 101111	Matrix Torrit	ITA	Seitz 🕑	
1	x,y,z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	{1 0}	
2	-x,-y,z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 0,0,z	{ 2 ₀₀₁ 0 }	
3	-x,y,-z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	2 0,y,0	{ 2 ₀₁₀ 0 }	
4	х,-у,-z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	2 x,0,0	{ 2 ₁₀₀ 0 }	

Wyckoff Positions of Group P222 (No. 16)

Multiplicity	Wyckoff letter	Site symmetry	Coordinates
4	u	1	(x,y,z) (-x,-y,z) (-x,y,-z) (x,-y,-z)
2	t	2	(1/2,1/2,z) (1/2,1/2,-z)
2	S	2	(0,1/2,z) (0,1/2,-z)
2	r	2	(1/2,0,z) (1/2,0,-z)
2	q	2	(0,0,z) (0,0,-z)
2	р	.2.	(1/2,y,1/2) (1/2,-y,1/2)
2	ο	.2.	(1/2,y,0) (1/2,-y,0)
2	n	.2.	(0,y,1/2) (0,-y,1/2)
2	m	.2.	(0,y,0) (0,-y,0)
2	I	2	(x,1/2,1/2) (-x,1/2,1/2)
2	k	2	(x,1/2,0) (-x,1/2,0)
2	j	2	(x,0,1/2) (-x,0,1/2)
2	i	2	(x,0,0) (-x,0,0)
1	h	222	(1/2,1/2,1/2)
1	g	222	(0,1/2,1/2)
1	f	222	(1/2,0,1/2)
1	е	222	(1/2,1/2,0)
1	d	222	(0,0,1/2)
1	С	222	(0,1/2,0)
1	b	222	(1/2,0,0)
1	а	222	(0,0,0)

Site-symmetry group

Determine the site-symmetry group for
the WP 2i (x,0,0)
$$(\mathbf{W},\mathbf{w})X_{0} = X_{0}$$

$$\mathbf{x},\mathbf{y},\mathbf{z} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x},\mathbf{y},\mathbf{z} \qquad \begin{pmatrix} \overline{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -x \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x},\mathbf{y},\mathbf{z} \qquad \begin{pmatrix} \overline{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -x \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x},\mathbf{y},\mathbf{z} \qquad \begin{pmatrix} \overline{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -x \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x},\mathbf{y},\mathbf{z} \qquad \begin{pmatrix} \overline{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x},\mathbf{y},\mathbf{z} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & \overline{1} & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$$

WYCKPOS

http://www.cryst.ehu.es/cryst/get_wp.html

Wyckoff Positions

How to select the group

The space groups are specified by their number as given in the *International Tables for Crystallography*, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link **choose it**.

The available crystallographic data refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings.

To get the data in any Non-conventional setting it is necessary to specify the corresponding transformation that relates the nonconventional to the standard/default setting of the space group. Please, enter the sequential number of group as given in *International Tables for Crystallography*, Vol. A or choose it:

Standard/Default Setting

Non Conventional Setting

ITA Settings

68

WYCKPOS

http://www.cryst.ehu.es/cryst/get_wp.html

Wyckoff Positions

How to select the group Please, enter the sequential number of group as given in 68 International Tables for Crystallography, Vol. A or choose it: The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You can give this Standard/Default Setting Non Conventional Setting ITA Settings number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link choose it. The available crystallographic data refer either to the standard/default setting of the chosen space group or to the so-called ITA Settings. To get the data in any Non-conventional setting it is necessary to specify the corr

transformation that relates the no conventional to the standard/def the space group.

The default choices for the standard (default) settings of the space groups are:

- unique axis b (cell choice 1) for space groups within the monoclinic system.
- obverse triple hexagonal unit cell for R space groups.
- the origin choice two inversion center at (0,0,0) for the centrosymmetric space groups for which there are two origin choices, within the orthorhombic, tetragonal and cubic systems.

WYCKPOS

http://www.cryst.ehu.es/cryst/get_wp.html

Wyckoff Positions

WYCKPOS

http://www.cryst.ehu.es/cryst/get_wp.html

Wyckoff Positions

16	i	1	(1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$	(2) $\bar{x} + \frac{1}{2}, \bar{y},$ (6) $x + \frac{1}{2}, y,$	z (3) z (7)	$ \bar{x}, y, \bar{z} + \frac{1}{2} x, \bar{y}, z + \frac{1}{2} $	(4) $x + \frac{1}{2}, \bar{y}, \bar{z} + \frac{1}{2}$ (8) $\bar{x} + \frac{1}{2}, y, z + \frac{1}{2}$
8	h	2	$\frac{1}{4}, 0, z$	$\frac{3}{4}, 0, \bar{z} + \frac{1}{2}$	$\frac{3}{4}, 0, \overline{z}$	$\frac{1}{4}, 0, z + \frac{1}{2}$	
8	8	2	$0, \frac{1}{4}, z$	$0, \frac{1}{4}, \bar{z} + \frac{1}{2}$	$0, \frac{3}{4}, \overline{z}$	$0, \frac{3}{4}, z + \frac{1}{2}$	
8	f	.2.	$0, y, \frac{1}{4}$	$\frac{1}{2}, \bar{y}, \frac{1}{4}$	$0, \bar{y}, \frac{3}{4}$	$\frac{1}{2}, y, \frac{3}{4}$	
8	е	2	$X, rac{1}{4}, rac{1}{4}$	$\bar{x} + \frac{1}{2}, \frac{3}{4}, \frac{1}{4}$	$ar{x},rac{3}{4},rac{3}{4}$	$x + \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	
8	d	Ī	0, 0, 0	$\frac{1}{2}, 0, 0$	$0, 0, \frac{1}{2}$	$\frac{1}{2},0,\frac{1}{2}$	
8	С	Ī	$\frac{1}{4}, \frac{3}{4}, 0$	$\frac{1}{4}, \frac{1}{4}, 0$	$\frac{3}{4}, \frac{3}{4}, \frac{1}{2}$	$\frac{3}{4}, \frac{1}{4}, \frac{1}{2}$	
4	b	222	$0, \frac{1}{4}, \frac{3}{4}$	$0, \frac{3}{4}, \frac{1}{4}$			
4	a	222	$0, \frac{1}{4}, \frac{1}{4}$	$0, \frac{3}{4}, \frac{3}{4}$	V	vyckoff Po	sitions of G

Space Group : Ccce (No. 68) [origin choice 2] Point : (0,1/4,1/4) Wyckoff Position : 4a

Site Symmetry Group 222

x,y,z	(1 0 0	0 1 0	0 0 1	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	1
-x,y,-z+1/2	(-1 0 0	0 1 0	0 0 -1	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	2 0,y,1/4
-x,-y+1/2,z	(-1 0 0	0 -1 0	0 0 1	$\begin{pmatrix} 0 \\ 1/2 \\ 0 \end{pmatrix}$	2 0,1/4,z
x,-y+1/2,-z+1/2	(1 0 0	0 -1 0	0 0 -1	$\begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}$	2 x,1/4,1/4

Wyckoff Positions of Group Ccce (No. 68) [origin choice 2]

Multiplicity	Wyckoff	Site	Coordinates							
manipricity	letter	symmetry	(0,0,0) + (1/2,1/2,0) +							
16	i	1	(x,y,z) (-x+1/2,-y,z) (-x,y,-z+1/2) (x+1/2,-y,-z+1/2) (-x,-y,-z) (x+1/2,y,-z) (x,-y,z+1/2) (-x+1/2,y,z+1/2)							
8	h	2	(1/4,0,z) (3/4,0,-z+1/2) (3/4,0,-z) (1/4,0,z+1/2)							
8	g	2	(0,1/4,z) (0,1/4,-z+1/2) (0,3/4,-z) (0,3/4,z+1/2)							
8	f	.2.	(0,y,1/4) (1/2,-y,1/4) (0,-y,3/4) (1/2,y,3/4)							
8	е	2	(x,1/4,1/4) (-x+1/2,3/4,1/4) (-x,3/4,3/4) (x+1/2,1/4,3/4)							
8	d	-1	(0,0,0) (1/2,0,0) (0,0,1/2) (1/2,0,1/2)							
8	С	-1	(1/4,3/4,0) (1/4,1/4,0) (3/4,3/4,1/2) (3/4,1/4,1/2)							
4	b	222	(0,1/4,3/4) (0,3/4,1/4)							
4	а	222	(0,1/4,1/4) 0,3/4,3/4)							

x,y,z	(1 0 0	0 1 0	0 0 1	0 0 0	1
-x+1,y,-z+1/2	(-1 0 0	0 1 0	0 0 -1	$\begin{pmatrix} 1\\ 0\\ 1/2 \end{pmatrix}$	2 1/2,y,1/4
-x+1,-y+1/2,z	(-1 0 0	0 -1 0	0 0 1	$\begin{pmatrix} 1\\ 1/2\\ 0 \end{pmatrix}$	2 1/2,1/4,z
x,-y+1/2,-z+1/2	(1 0 0	0 -1 0	0 0 -1	$\begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}$	2 x,1/4,1/4

Consider the special Wyckoff positions of the the space group P4mm (No. 99)

- 1. Determine the site-symmetry groups of Wyckoff positions 1a and 1b. Compare the results with the listed *ITA* data.
- 2. The coordinate triplets (x,1/2,z) and (1/2,x,z), belong to Wyckoff position 4f. Compare their site-symmetry groups.
- 3. Compare your results with the results of theprogram WYCKPOS.

Consider the Wyckoff-positions data of the space group *I41/amd* (*No.141*), origin choice 2.

- a) Determine the site-symmetry groups of Wyckoff positions *4a*, *4c*, *8d* and *8e*. Compare the results with the listed ITA data. Compare your results with the results of the program WYCKPOS.
- b) Characterize geometrically the isometries (3), (7), (12), (13) and (16) as listed under General Position. Compare the results with the corresponding geometric descriptions listed under Symmetry operations block in ITA. Comment on the differences between the corresponding symmetry operations listed under the sub-blocks (0, 0, 0) and (1/2, 1/2, 1/2).
- c) Compare your results with the results of the program SYMMETRY OPERATIONS.
- d) How do the above results change if *origin choice 1* setting of I4₁/amd is considered?

ITA-conventional setting of space groups

Consider the space group P21/c (No. 14). Show that the relation between the *General* and *Special* position data of P1121/a (setting *unique axis c*) can be obtained from the data P121/c1(setting *unique axis b*) applying the transformation $(\mathbf{a'},\mathbf{b'},\mathbf{c'})_{c} = (\mathbf{a},\mathbf{b},\mathbf{c})_{b}P$, with $P = \mathbf{c},\mathbf{a},\mathbf{b}$.

Use the retrieval tools GENPOS (generators and general positions) and WYCKPOS (Wyckoff positions) for accessing the space-group data. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in *ITA*.

Non-conventional setting of space groups

Use the retrieval tools GENPOS or *Generators* and *General positions*, WYCKPOS (or *Wyckoff positions*) for accessing the space-group data on the *Bilbao Crystallographic Server*. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA.

Consider the General position data of the space group *Im-3m* (No. 229). Using the option *Non-conventional setting* obtain the matrix-column pairs of the symmetry operations with respect to a primitive basis, applying the transformation $(\mathbf{a}', \mathbf{b}', \mathbf{c}') = 1/2(-\mathbf{a}+\mathbf{b}+\mathbf{c}, \mathbf{a}-\mathbf{b}+\mathbf{c}, \mathbf{a}+\mathbf{b}-\mathbf{c})$

P4mm	C_{4v}^1	4 <i>mm</i>		Tetra	agonal						
No. 99	P4mm	Р	Patterson symmetry P4/mmm Bilbao Crysta			Crystall	ographic	Server			
		$\begin{array}{c} & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$		nrs selé	seted (1): t	(1.0.0): #(0.		Spa	ce-grou	p symme	try
Origin on 4mm			Positions	is ser	(1), /	(1,0,0), 1(0,	1,0), 1(0,	0,1), (2), (5), (5)		
Asymmetric unit	$0 \le x \le \frac{1}{2}; 0 \le y \le \frac{1}{2}; 0 \le z \le 1;$	$x \leq y$	Multiplicity Wyckoff let	, ter,		Coord	dinates	GEI	NPOS		Reflection conditions
(1) 1 (1)	$(2) \ 2 \ 0, 0, z \qquad (3) \ 4^+ \ 0, 0, z$	(4) 4^{-} 0,0,z	Site symme	try							General:
(5) $m x, 0, z$ ((6) m 0, y, z (7) m x, \bar{x} , z	(8) $m x, x, z$	8 g 1		(1) x, y, z (5) x, \bar{y}, z	(2) \bar{x}, \bar{y}, z (6) \bar{x}, y, z	(3) j (7) j	\bar{v}, x, z \bar{v}, \bar{x}, z	(4) y, \bar{x}, z (8) y, x, z		no conditions
	SYMMETRY										Special:
			4 <i>f</i> .	<i>m</i> .	$x, \frac{1}{2}, z$	$ar{x}, rac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$			no extra conditions
U	PERAIIONS		4 e .	<i>m</i> .	<i>x</i> ,0, <i>z</i>	$\bar{x}, 0, z$	0, x, z	$0, \bar{x}, z$			no extra conditions
			4 <i>d</i> .	. <i>m</i>	<i>x</i> , <i>x</i> , <i>z</i>	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z			no extra conditions
			2 c 2	<i>m m</i> .	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, z$					hkl: $h+k=2n$
			1 <i>b</i> 4	m m	$\frac{1}{2}, \frac{1}{2}, Z$		Ν		(POS		no extra conditions
			1 a 4	m m	0,0,z						no extra conditions
TABLES			Symmeti Along [00 a' = a Origin at 0	y of sp [] p4m b' = b [0,0,z]	pecial project	tions a C	Along [100 n' = b Drigin at <i>x</i> ,	p 1 m 1 b' = c 0,0		Along [110] p 1 $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ Origin at $x, x, 0$	m 1 $\mathbf{b}' = \mathbf{c}$
RYSTALLOG	Volume		Maximal I [2] [2] IIa nor IIb [2]	non-is P411(P21m P2m1 ie P4.mc	somorphic su (P4, 75) (Cmm2, 35) (Pmm2, 25) (c' = 2c) (105)	ibgroups 1; 2; 3; 4 1; 2; 7; 8 1; 2; 5; 6); [2] P4cc (6	r' = 2c (10	03): [2] <i>P</i> 4.	cm(c'=2c)(101)): [2] $C4md$ (a' = 2	MAXSUB
Or C	A		[2]	F4mc	(a' = 2a, b' = 2a)	$2\mathbf{b}, \mathbf{c}' = 2\mathbf{c})(I$	4 <i>cm</i> , 108); $[2] \vec{F} 4mn$	$n (\mathbf{a}' = 2\mathbf{a}, \mathbf{b}' = 2\mathbf{b}$	$\mathbf{c}, \mathbf{c}' = 2\mathbf{c}$ (14mm, 1	07)
	space-group symmetry Edited by Mois I Aroyo Sixth edition		Maximal IIc [2]	isomo P4 <i>mm</i>	rphic subgroup (c' = 2c) (99);	oups of lowe ; [2] C4mm (a	est index a' = 2a, b'	$= 2\mathbf{b}$) (P4n	am, 99)	SERIE	ES
	Dates in the State Angle		Minimal	non-is	omorphic su	pergroups					

[2] P4/mmm(123); [2] P4/nmm(129)

I

п

[2] I4mm (107)

MINSUP