Summer School on Mathematical Crystallography

3-7 June 2019, Nancy (France)

International Union of CrystallographyCommision on Mathematical and Theoretical Crystallography

CRYSTAL-STRUCTURE RELATIONS

Gemma de la Flor Martin Karlsruhe Institute of Technology

CRYSTAL-STRUCTURE RELATIONSHIPS

Structure relations

Symmetry relations between crystal structures

Structural pseudosymmetry

www.cryst.ehu.es

bilbao crystallographic server

Bilbao Crystallographic Server in forthcoming schools and workshops

News:

- New Article in Acta Cryst. A 05/2019: Gallego et al. "Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server." Acta Cryst. (2019) A75, 438-447.
- New Article in Nature 03/2019: Vergniory et al. "A complete catalogue of highquality topological materials" Nature (2019). 566, 480-485.

Updated versions of TENSOR and MTENSOR 03/2019: The programs give the general expression of tensor properties for a given point group and magnetic point group, respectively.

Contact us	About us	Publications	How to cite the server
	٤	Space-group symmet	гу
	Magneti	ic Symmetry and App	lications
	Group-Sub	group Relations of S	bace Groups
	Repre	sentations and Appli	cations
	Solid	l State Theory Applic	ations
		Structure Utilities	
	Subperiodic G	roups: Layer, R <u>od an</u>	d Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

Plane-group symmetry

Double point and space groups

www.cryst.ehu.es

Nature (2019). 566, 480-485. • Updated versions of TENSOR and MTENSOR 03/2019: The programs give the general expression of tensor properties for a given point group and magnetic point group, respectively..

bilbao crystallographic server

	Contact us	About us	Publications	How to cite the server
N			Space-group symmet	гу
		Magnet	ic Symmetry and App	lications
		Structure	Utilities	
CELLTRAN	Transform Unit	Cells		
STRAIN	Strain Tensor C	alculation		
WPASSIGN	Assignment of V	Vyckoff Positions		
TRANSTRU	Transform struc	tures.		
SETSTRU	Alternative Setti	ngs for a given Cr	ystal Structure	
EQUIVSTRU	Equivalent Desc	criptions for a give	n Crystal Structure	
STRCONVERT	Convert & Edit S (supports the CIF, n	Structure Data nCIF, VESTA, VASP fi	ormats with magnetic inform	nation where available)
VISUALIZE	Visualize structu	ires using Jmol		
COMPSTRU	Comparison of	Crystal Structures	with the same Symmetry	у
STRUCTURE RELATIONS	Evaluation of st	ructure relationshi	ps [transformation matrix	k] between group-subgroup related phas
PSEUDOLATTICE	Pseudosymmet	ry of a lattice and	compatible supergroups	
complete catalogue of high- quality topological materials"		Kalliali	ани пурег-кашан зо	sattering

Point-group symmetry

Plane-group symmetry

Double point and space groups

www.cryst.ehu.es

in

Ne

quality topological materials" Nature (2019). 566, 480-485.
Updated versions of TENSOR and MTENSOR 03/2019: The programs give the general expression of tensor properties for a given point group and magnetic point group, respectively..

bilbao crystallographic server

	Contact us	About us	Publications	How to cite the server			
N		\$	Space-group symmetr	у			
A bilbao		Magnetic Symmetry and Applications					
		Solid State	Theory Applicat	ions			
NEUTRON	Neutror	n Scattering Sele	ection Rules				
SYMMODES	Primary	and Secondary	Modes for a Group -	Subgroup pair			
AMPLIMODES	Symme	try Mode Analys	sis				
PSEUDO	Pseudo	symmetry Sear	ch in a Structure				
DOPE	Degree	of Pseudosymr	netry Estimation				
TRANPATH	Transiti	on Paths (Group	not subgroup relatio	ns)			
TENSOR 🛆	Symme	etry-adapted form	n of crystal tensors				
, 43ŏ-441.	2		Structure Databases				
New Article in Nature 03/2019: Vergniory et al. "A complete catalogue of high-		Raman	and Hyper-Raman sc	attering			

Point-group symmetry

Plane-group symmetry

Double point and space groups

CRYSTAL-STRUCTURE RELATIONSHIP

You can access to the material of the workshop by:

http://www.cryst.ehu.es/resources/nancy2019/

You can need to download:

- StructureRelations.txt

STRUCTURE RELATIONS

CRYSTAL-STRUCTURE RELATIONSHIP

Symmetry relations using crystallographic group-subgroup relations is a vaulable tool in crystal chemistry and physics.

Applications

- Family trees of group-subgroup relations (Bärnighausen tree)
- Twinned crystals and antiphase domains
- Phase transitions
- Prediction of crystal-structure types

Structural Relationship between two structures with group-subgroup related symmetry groups **G** > **H**

High symmetry structure

Enter the formula units in the high symmetry structure STRUCTURE RELATIONS (Leave blank for auto-detection via the volume information) Structure Data Examinar... No se ha seleccionado ningún archivo. [CIF format] http://www.cryst.ehu.es/cryst/rel.html # Space Group ITA number 221 # Lattice parameters 4.006 4.006 4.006 90 90 90 # Number of independent atoms in the asymmetric unit 3 # [atom type] [number] [WP] [x] [y] [z] Ba 1 1a 0.0 0.0 0.0 BCS Format Ti 1 1b 0.5 0.5 0.5 Calculation parameters: 1 3c 0.5 0.0 0.5 0 Enter the allowed tolerance (a b c $\alpha \beta \gamma$): .2 .2 .3 2 2 2 Enter the maximum distance allowed between the paired atoms: 1.5 Low symmetry structure: One or both of the structures are given in a non-standard setting?
ON | OYes Enter the formula units in the low symmetry structure (Leave blank for auto-detection via the volume information) Calculation method: Structure Data The group-subgroup transformation matrices are automatically fetched from the database. Examinar... No se ha seleccionado ningún archivo. [CIF format] O User defined group-subgroup transformation matrix : a,b,c;0,0,0 # Space Group ITA number 38 # Lattice parameters 3.9828 5.6745 5.6916 90 90 90 # Number of independent atoms in the asymmetric unit 4 # [atom type] [number] [WP] [x] [y] [z] Ba 1 2a 0.0 0.0 0 BCS Format Ti 1 2b 0.5 0.0 0.5170 0 1 2a 0.0 0.0 0.4890 0 2 4e 0.5 0.2561 0.2343

BaTiO₃

WP		Atom	Atomic Displacements				
		Atom	u _x	uy	uz	u	
2a	(0,0,Z)	Ba1	0.0000	0.0000	-0.0051	0.0289	
2b	(1/2,0,z)	Ti1	0.0000	0.0000	-0.0221	0.1257	
2a	(0,0,Z)	012	0.0000	0.0000	0.0059	0.0337	
4e	(1/2,y,z)	01	0.0000	-0.0061	0.0106	0.0697	

High Symmetry Structure

221							
4.006	4.00	06 4	.006	90	90	90	
3							
Ba	1	1a	0.	.000	0000	0.000000	0.000000
Ti	1	1b	0.	500	0000	0.500000	0.500000
0	1	3c	Ο.	500	0000	0.000000	0.500000

038 4.006 4	000 5.66	5339 5.6	65339 90.000000	90.000000 90.000	0000
Ba	1	2a	0.000000	0.00000	0.994920
Ti	1	2b	0.500000	0.000000	0.494920
0	1	4e	0.500000	0.250000	0.244920
0	12	2a	0.00000	0.000000	0.494920

Evaluation of the Global Distortion

S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0025	0.1257	0.0655	0.035

Low Symmetry Structure

38					
3.9828	5.6	5745	5.6916 90	90 90	
4					
Ba	1	2a	0.00000	0.000000	0.000000
Ti	1	2b	0.500000	0.000000	0.517000
0	1	2a	0.000000	0.000000	0.489000
0	2	4e	0.500000	0.256100	0.234300

Exercise 3.5

Cristobalite phase transitions

At low temperatures, the space-group symmetry of cristobalite is given by the space group is $P4_12_12$ (92) with lattice parameters a = 4.9586Å, c = 6.9074Å. The four silicon atoms are located in Wyckoff position 4(a)..2 with the coordinates x, x, 0; -x, -x, 1/2; 1/2 - x, 1/2 + x, 1/4; 1/2 + x, 1/2 - x, 3/4, x = 0.3028. During the phase transition, the tetragonal structure is transformed into a cubic one with space group $Fd\bar{3}m(227)$, a = 7.147A. It is listed in the space-group tables with two different origins.

- 1. If Origin choice 2 setting is used (with point symmetry $\bar{3}m$ at the origin), then the silicon atoms occupy the position 8(a) $\bar{4}3m$ with the coordinates 1/8, 1/8, 1/8, 1/8, 7/8, 3/8, 3/8 and those related by the face - centring translations. Describe the structural distortion from the cubic to the tetragonal phase by the determination of (i) the displacements if the Si atoms in relative and absolute units, and (ii) the lattice distortion accompanying the transition.
- 2. Repeat the calculations for the characterization of the phase transition using the *Origin-choice* 1 description of the high-symmetry phase (*cf. Exercise Data* file for the structure data).

Exercise 3.6

Lead phosphate phase transition

- (a) Lead phosphate $Pb_3(PO_4)_2$ shows a phase transition from a paraelastic high-temperature phase with symmetry $R\bar{3}m$ (No.166) to a ferroelastic phase of symmetry C2/c (No.15). Using the structure data given in the *ExerciseData* file and the tools of the *Bilbao Crystallographic Server*:
 - (a) characterize the symmetry reduction between the high- and low-symmetry phases (index and transformation matrix);
 - (b) describe the structural distortion from the rhombohedral to the monoclinic phase by the evaluation of the lattice strain and the atomic displacements accompanying the phase transition.

SYMMETRY RELATIONS BETWEEN CRYSTAL STRUCTURES

BÄRNIGHAUSEN TREES

Symmetry relations between crystal structures

Bärnighausen Trees: Pyrite Structural Family

Bärninghausen Trees

Module design of crystal symmetry relations

Scheme of the general formulation of the smallest step of symmetry reduction connecting two related crystal structures

Bärninghausen Trees

Symmetry relations between crystal structures

Structural Relationship between two structures with group-subgroup related symmetry groups **G > H**

Symmetry relations between crystal structures

High symmetry structure

Low symmetry structure:

Enter the formula units in the low symn (Leave blank for auto-detection via the v

099

15 Fe 1

Fe

Fe

Fe 1 Fe

Fe

Fe

Fe

Fe

Fe

Enter the formula units in the high symmetry structure (Leave blank for auto-detection via the volume information)

Examinar... No se ha se

4.252540 4.252540 3

8g

1 2 8g

1 3 8g

1 4 8g

1 10

1 11

1 12

0.91000

0.62000

0.44000

0.27000

8g 0.1

8g 0.320000

0.150000

0.710000

5 8g 0.65000

6 8g 0.82000

1 7 8g 0.41000

1 8 8g 0.12000

1 9 8g 0.94000

Structure Data [CIF format]

Examinar... No se ha se

BCS Format

Structure Data

BCS Format

[CIF format]

221 3.007 3.007 3.007 9 3 Al 1 48n 0.17000

Different atomic species

lo se ha seleccionado ningún archivo.	
	Calculation parameters:
3.007 90. 90. 90.	Enter the allowed tolerance (a b c a β γ): 2 2 2 2 2 2 2
0.170000 0.290000 0.470000	Enter the maximum distance allowed between the paired atoms: 1.5 Å
	One or both of the structures are given in a non-standard setting? No OYes
	Calculation method:
w symmetry structure via the volume information)	 The group-subgroup transformation matrices are automatically fetched from the database. User defined group-subgroup transformation matrix : a,b,c;0,0,0
o se ha seleccionado ningún archivo.	Species Matching:
52540 3.0070(000 90.000000 90.	□ Force a species match even if the two structures contain the same types of elements
0.910000 0.380000 0.170000 0.620000 0.90000 0.830000 0.440000 0.730000 0.470000 0.270000 0.560000 0.530000 0.650000 0.820000 0.290000 0.820000 0.650000 0.710000 0.410000 0.880000 0.170000 0.120000 0.590000 0.830000 0.940000 0.230000 0.470000 8g 0.770000 0.060000 0.530000	Coming soon

Hettotype of CsCI structure

Show that the crystal structure of CoU maybe interpreted as a slightly distorted CsCl (or b-brass, CuZn)-type structure. Using the structural data in the Exercise Data file, characterize the structural relationship between the CuZn structure and CoU structure.

```
      #CuZn (CsCl type): Pm-3m
      #CoU type:l213

      221
      199

      2.959 2.959 2.959 90. 90. 90. 20.
      6.3557 6.3557 6.3557 90. 90. 90. 20.

      2
      Co 1 8a 0.2940 0.2940 0.2940

      2
      Co 1 8a 0.0347 0.0347 0.0347

      U
      1 8a 0.0347 0.0347
```

Exercise 3.9

HT-quartz and LT-quartz

(a) Upon heating above 573 °C the LT-quartz transforms to its HT form. Set up the corresponding Bärnighausen tree that describes the symmetry relations between the two quartz forms. Which additional degree of freedom are present in the lower symmetry form? (The crystal structures of HT-quartz and LT-quartz can be found in the ExerciseData file.)

(b) Consider the structure data of $AIPO_4$ listed in the ExerciseData file. Describe its structural relationship to quartz and construct the corresponding Bärnighausen tree.

Hint:

In order to find the structural relationship between quartz and AIPO₄ consider the splitting of Si positions into two: one for AI and one for P.

STRUCTURAL PSEUDOSYMMETRY

Search for a structure of space-group symmetry G supergroup of H, such that:

structure	9	structu	re	small
н	=	G	+	(symmetry-breaking) distortion
r _i		r_i^0		uioraini u _i

If the distortion is small enough, it can indicate a symmetry change at high temperature

Applications

- ✓ Prediction of phase
- ✓ Search for new ferroic materials
- Prediction of the symmetry and structure of some other phase of a material
- ✓ Detection of false symmetry assignment (overlooked symmetry)
- Space-group determination of theoretical determined structure (e.g. ab initio calculations)
- ✓ Determination of an optimised virtual parent structure (paraphrase)

search for a structure of

Space-group symmetry G>H such that the initial structure can be described by the high-symmetry structure with tolerably small distortion

Any group – supergroup relation can be represented by a chain of minimal supergroups

 $G > \mathcal{H} \rightarrow G > \ldots > \mathcal{Z}_2 > \mathcal{Z}_1 > \mathcal{H}$

The search for pseudosymmetry can be performed as a stepwise detection of pseudosymmetry for successive minimal supergroups

If a structure of symmetry H is pseudosymmetric for a supergroup G, it will be pseudosymmetric for all intermediate subgroups Z_i

Capillas et al. Z. Kristallogr. 226 (2011)

PSEUDO: <u>http://www.cryst.ehu.es/cryst/pseudosymmetry.html</u>

PSEUDO is not applicable to structures with order-disorder features in their distortion

Search of maximal pseudosymmetry stepwise

Select supergroups type for pseudosymmetry search.

Option 1

Minimal supergroups	\Box [Show only indices in supergroups table]	
 Supergroups with k-index 	i _k : 1 ×	
○ Specify supergroup transformation	G: 221	
Transf. Matrix (in option 3 only)	Linear part 1 0 0 0 1 0 0 0 1	Origin Shift 0 0 0
O A For monoclinic and triclinic structures: previous check of lattice pseudosymmetry	, Ang. Tol (in degrees) 5 [*]	
[*] Only for triclinics and monoclinics.		
Enter the tolerance (maximum allowed distance) for Maximum Δ: 2	pseudosymmetry search.	

Search among supergroups with fixed k-index

Select supergroups type for pseudosymmetry search.

Minimal supergroups	□ [Show only indices in supergroups table]	
O Supergroups with k-index	i _k : 1 ×	
 Specify supergroup transformation 	G: 221	
	Linear part	Origin Shift
Transf. Matrix	1 0 0	0
(in option 3 only)	0 1 0	0
	0 0 1	0
 A For monoclinic and triclinic structures: previous check of lattice pseudosymme [*] Only for triclinics and monoclinics. 	Ang. Tol (in degrees) 5 [*]	
Enter the tolerance (maximum allowed distance) f	for pseudosymmetry search.	-
Maximum Δ: 2		

Tolerance [Å]

Search of pseudosymmetry for a specific supergroup

Select supergroups type for pseudosymmetry search.

Minimal supergroups	□[Show only indices in supergroup]	ps table]
○ Supergroups with k-index	i _k : 1 ×	
 Specify supergroup transformation 	G: 221	
	Linear part	Origin Shift
Transf. Matrix	1 0 0	0
(in option 3 only)	0 1 0	0
	0 0 1	0
O A For monoclinic and triclinic structures: previous check of lattice pseudosymn [*] Only for triclinics and monoclinics.	Ang. Tol (in degrees) 5 [*]	I
nter the tolerance (maximum allowed distance) for pseudosymmetry search.	
Maximum Δ: 2		0

Tolerance [Å]

Option 3

Select supergroups type for pseudosymmetry search.

O Supergroups with k-index	. 1 ~	
O Specify supergroup transformation	: 221	
	Linear part	Origin Shift
Transf, Matrix	1 0 0	0
(in option 3 only)	0 1 0	0
	0 0 1	0
○ ▲ For monoclinic and triclinic structures: previous check of lattice pseudosymmetry	Ang. Tol (in degrees) 5 [*]	New Version Coming Soon
Only for triclinics and monoclinics.		
er the tolerance (maximum allowed distance) for p	seudosymmetry search.	6
		6

Tolerance [Å]

Option 4

Exercise 3.11

Analyse the structural pseudosymmetry of Pb₂MgWO₆

Option 1: Search of maximal pseudosymmetry stepwise 'climbing' via minimal supergroups

#Exercise 2.4.10:Pb2MgWO6:Pseudo1 # Space Group ITA number 62 # Lattice parameters 11.4059 7.9440 5.6866 90.00 90.00 90.00 # Number of independent atoms in the asymmetric unit 8 # [atom type] [number] [WP] [x] [y] [z] Pb 1 8d 0.1422 0.0032 0.7804 Mg 1 4c 0.3772 0.25 0.7519 W 1 4c 0.1161 0.25 0.2577 O 1 8d 0.1314 0.4907 0.2365 O 2 4c 0.0027 0.25 0.0133 O 3 4c 0.0103 0.25 0.4991 O 4 4c 0.237 0.25 -0.0153 \mathbf{O} 5 4c 0.2491 0.25 0.4745

Exercise 3.11 (ii)

Analyse the structural pseudosymmetry of Pb₂MgWO₆

Option 3: Search of structural pseudosymmetry with respect to specific supergroup

Exercise 3.12

Analyse the structural pseudosymmetry of the virtual structure of $C222_1$ (No. 20) symmetry stepwise, *i.e.* via the minimal supergroup Option 1 of PSEUDO. Compare the results if different minimal-supergroup paths are followed.

Exercise 3.13

Ga under pressure

Analyse the structural pseudosymmetry of the orthorhombic phase Ga-II of Ga under pressure. (For the structure data, see the Structure Data file.)

C222_1 a=5,976Å b=8,576Å c=35,758Å α =90,0° β =90,0° γ =90,0°

Hint: As a first step check the structural pseudosymmetry with respect to an isomorphic supergroup of index 13, specified by the transformation matrix: **a**,**b**,13**c**, i.e. first apply Option 3 of PSEUDO

SERCH FOR FERROELECTRIC MATERIALS

Search for ferroelectrics

Two necessary conditions for a structure to be ferroelectric:

- Polar symmetry group (it should allow non-zero polarization)
- Pseudosymmetry with respect to a non-polar symmetry group (the polar distortion should be small and "multistable")

Search for ferroelectrics

Select minimal supergroups of space group P4mm (99)

BaTiO₃

The next step is to select the supergroups which the pseudosymmetry should be searched for. Each supergroup in the table can be selected by marking the corresponding che

No. #	Select	HM Symb.	IT Numb.	Index	Index i _k	Transformation (P,p)	Transformed Cell	Wyckoff Positions Splitting Consideration
1		P4mm	099	2	2	a,b,2c ; 0,0,2t	3.9990 3.9990 2.0100 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
2		P4mm	099	2	2	a-b,a+b,c ; 0,0,t	2.8277 2.8277 4.0200 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
3		P4mm	099	3	3	a,b,3c ; 0,0,3t	3.9990 3.9990 1.3400 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c; 10° for α,β,γ & lengths must be >2.0Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
4		P4mm	099	5	5	a,b,5c ; 0,0,5t	3.9990 3.9990 0.8040 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c; 10° for α,β,γ & lengths must be >2.0Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
5		P4mm	099	7	7	a,b,7c ; 0,0,7t	3.9990 3.9990 0.5743 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.0Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
6		P4mm	099	9	9	a,b,9c ; 0,0,9t	3.9990 3.9990 0.4467 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.0Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
7		P4mm	099	9	9	3 a,3b,c ; 0,0,t	1.3330 1.3330 4.0200 90.00 90.00 90.00 Lattice parameters don't comply [Threshold: 0.5Å for a,b,c ; 10° for α,β,γ & lengths must be >2.0Å]	This transformation is invalid under Wyckoff Splitting criteria. Details
8		l4mm	107	2	2	a,b,c ; 0,0,t	3.9990 3.9990 4.0200 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details
9		P4/mmm	123	2	1	a,b,c ; 0,0,t	3.9990 3.9990 4.0200 90.00 90.00 90.00	This transformation is <u>valid</u> under Wyckoff Splitting conditions. Details
10		P4/nmm	129	2	1	a,b,c ; 1/4,1/4,t	3.9990 3.9990 4.0200 90.00 90.00 90.00	This transformation is invalid under Wyckoff Splitting criteria. Details

HINT: The initial structure is polar, which means that, in general, an origin shift will be necessary to minimize the displacements between the initial polar structure and the hypothetical idealized parent one. Please

insert a minimum grid for the optimization (in Angstroms)

grid for optimization

Exercise 3.15

Non-polar phases of NaSb₃F₁₀

The compound NaSb₃F₁₀ whose room-temperature phase is polar, space group P6₃, has been predicted to be ferroelectric. (For the structure data, see the Structure Data file.) The symmetries P6₃22 and P6₃/mmc had been proposed for two successive non-polar phases at high temperature.

Applying the pseudosymmetry approach confirm the predictions for the non-polar phases of $NaSb_3F_{10}$. Show that apart from P6₃22, there are two more appropriate candidates for the intermediate phases between the polar phase P6₃ and the non-polar one of maximal symmetry, P6₃/mmc.

