N | (x,y,z) form | matrix form | Seitz symbol |
---|
1 | x,y,z, +1 m_{x},m_{y},m_{z} | | 1 0 0
0 1 0
0 0 1 | |
| 1 |
2 | -y,x-y,z, +1 -m_{y},m_{x}-m_{y},m_{z} | | 0 -1 0
1 -1 0
0 0 1 | |
| 3_{z} |
3 | -x+y,-x,z, +1 -m_{x}+m_{y},-m_{x},m_{z} | | -1 1 0
-1 0 0
0 0 1 | |
| 3_{z}^{-1} |
4 | x,x-y,-z, +1 m_{x},m_{x}-m_{y},-m_{z} | | 1 0 0
1 -1 0
0 0 -1 | |
| 2_{1} |
5 | -x+y,y,-z, +1 -m_{x}+m_{y},m_{y},-m_{z} | | -1 1 0
0 1 0
0 0 -1 | |
| 2_{2} |
6 | -y,-x,-z, +1 -m_{y},-m_{x},-m_{z} | | 0 -1 0
-1 0 0
0 0 -1 | |
| 2_{3} |
7 | -x+y,-x,-z, +1 m_{x}-m_{y}, m_{x}, m_{z} | | -1 1 0
-1 0 0
0 0 -1 | |
| -6_{z} |
8 | x,y,-z, +1 -m_{x}, -m_{y}, m_{z} | | 1 0 0
0 1 0
0 0 -1 | |
| m_{z} |
9 | -y,x-y,-z, +1 m_{y}, -m_{x}+m_{y}, m_{z} | | 0 -1 0
1 -1 0
0 0 -1 | |
| -6_{z}^{-1} |
10 | -x+y,y,z, +1 m_{x}-m_{y}, -m_{y}, -m_{z} | | -1 1 0
0 1 0
0 0 1 | |
| m_{x} |
11 | -y,-x,z, +1 m_{y}, m_{x}, -m_{z} | | 0 -1 0
-1 0 0
0 0 1 | |
| m_{x}_{y} |
12 | x,x-y,z, +1 -m_{x}, -m_{x}+m_{y}, -m_{z} | | 1 0 0
1 -1 0
0 0 1 | |
| m_{y} |
13 | x-y,x,z, -1 -m_{x}+m_{y}, -m_{x}, -m_{z} | | 1 -1 0
1 0 0
0 0 1 | | ' |
| 6_{z}' |
14 | -x,-y,z, -1 m_{x}, m_{y}, -m_{z} | | -1 0 0
0 -1 0
0 0 1 | | ' |
| 2_{z}' |
15 | y,-x+y,z, -1 -m_{y}, m_{x}-m_{y}, -m_{z} | | 0 1 0
-1 1 0
0 0 1 | | ' |
| 6_{z}^{-1}' |
16 | x-y,-y,-z, -1 -m_{x}+m_{y}, m_{y}, m_{z} | | 1 -1 0
0 -1 0
0 0 -1 | | ' |
| 2_{x}' |
17 | y,x,-z, -1 -m_{y}, -m_{x}, m_{z} | | 0 1 0
1 0 0
0 0 -1 | | ' |
| 2_{x}_{y}' |
18 | -x,-x+y,-z, -1 m_{x}, m_{x}-m_{y}, m_{z} | | -1 0 0
-1 1 0
0 0 -1 | | ' |
| 2_{y}' |
19 | -x,-y,-z, -1 -m_{x},-m_{y},-m_{z} | | -1 0 0
0 -1 0
0 0 -1 | | ' |
| -1' |
20 | y,-x+y,-z, -1 m_{y},-m_{x}+m_{y},-m_{z} | | 0 1 0
-1 1 0
0 0 -1 | | ' |
| -3_{z}' |
21 | x-y,x,-z, -1 m_{x}-m_{y},m_{x},-m_{z} | | 1 -1 0
1 0 0
0 0 -1 | | ' |
| -3_{z}^{-1}' |
22 | -x,-x+y,z, -1 -m_{x},-m_{x}+m_{y},m_{z} | | -1 0 0
-1 1 0
0 0 1 | | ' |
| m1' |
23 | x-y,-y,z, -1 m_{x}-m_{y},-m_{y},m_{z} | | 1 -1 0
0 -1 0
0 0 1 | | ' |
| m2' |
24 | y,x,z, -1 m_{y},m_{x},m_{z} | | 0 1 0
1 0 0
0 0 1 | | ' |
| m3' |