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A free web page under the name MAGNDATA, which provides detailed

quantitative information on more than 400 published magnetic structures, has

been developed and is available at the Bilbao Crystallographic Server (http://

www.cryst.ehu.es). It includes both commensurate and incommensurate

structures. This first article is devoted to explaining the information available

on commensurate magnetic structures. Each magnetic structure is described

using magnetic symmetry, i.e. a magnetic space group (or Shubnikov group).

This ensures a robust and unambiguous description of both atomic positions and

magnetic moments within a common unique formalism. A non-standard setting

of the magnetic space group is often used in order to keep the origin and unit-

cell orientation of the paramagnetic phase, but a description in any desired

setting is possible. Domain-related equivalent structures can also be down-

loaded. For each structure its magnetic point group is given, and the resulting

constraints on any macroscopic tensor property of interest can be consulted.

Any entry can be retrieved as a magCIF file, a file format under development by

the International Union of Crystallography. An online visualization tool using

Jmol is available, and the latest versions of VESTA and Jmol support the

magCIF format, such that these programs can be used locally for visualization

and analysis of any of the entries in the collection. The fact that magnetic

structures are often reported without identifying their symmetry and/or with

ambiguous information has in many cases forced a reinterpretation and

transformation of the published data. Most of the structures in the collection

possess a maximal magnetic symmetry within the constraints imposed by the

magnetic propagation vector(s). When a lower symmetry is realized, it usually

corresponds to an epikernel (isotropy subgroup) of one irreducible representa-

tion of the space group of the parent phase. Various examples of the structures

present in this collection are discussed.

1. Introduction

The quantitative characterization of the magnetic ordering

realized in magnetic phases is an essential part of research into

the magnetic properties of solids. It is certainly fundamental

for the cross-checking of theoretical models and for the

exploration of complex solid-state magnetic phenomena.

Furthermore, the determination of magnetic structures,

mainly using neutron diffraction data, is a fundamental step in

the search for functional materials for magnetic and/or

magnetostructural applications. Since the first report of a

magnetic structure determined from neutron diffraction data

in 1949 (Shull & Smart, 1949), the magnetic structures of

thousands of compounds have been investigated and reported.

In 1976, an important effort was made to gather information

available on all the magnetic structures known at that point,
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and a compilation of about 1000 magnetic structures was

published (Oles et al., 1976). This effort continued with an

additional listing of about 100 structures in 1984 (Oles et al.,

1984). Since then, experimental facilities, instruments and

analysis methods have improved enormously, and hundreds of

magnetic structures are being reported each year. We estimate

that, at the moment, there must be about 5000 published

magnetic structures. In this scenario, the convenience of a

digital database of magnetic structures seems clear, but

despite some early work in this direction (Dul et al., 1997), the

lack of standards in the description and communication of

magnetic structures has precluded the development of an

appropriate computer database.

Two recent developments have, however, opened up new

possibilities for the systematic application of magnetic

symmetry and the achievement of a standardized framework

for the description and digital storage of magnetic structures.

Firstly, computer-readable listings of the magnetic space

groups (or Shubnikov groups) have been made available

(Litvin, 2013; Stokes & Campbell, 2011). Secondly, the

superspace formalism (the standard approach for the quanti-

tative description of non-magnetic incommensurate struc-

tures) has been extended in detail to incommensurate

magnetic structures (Petřı́ček et al., 2010; Perez-Mato et al.,

2012). These fundamental steps have been the basis for the

development of a series of computer tools for a comprehen-

sive application of magnetic symmetry properties that allow an

efficient crystallography-like methodology in the analysis and

description of commensurate and incommensurate magnetic

phases (Perez-Mato et al., 2015). This methodology not only

permits the exploration of the possible magnetic orderings

associated with one or more propagation vectors in a form that

complements and goes beyond the traditional representation

method, but can also be employed to store and retrieve any

magnetic structure in a robust and unambiguous form analo-

gous to that employed for ordinary non-magnetic crystalline

structures.

Another milestone has been the development by the

Commission on Magnetic Structures of the IUCr (Interna-

tional Union of Crystallography, 2015) of the so-called

magCIF format, i.e. an extension of the CIF (crystallographic

information file) format (Brown & McMahon, 2002), which

provides a robust and unambiguous file format for the

archiving and exchange of magnetic structure information. Its

preliminary version is already supported by the above-

mentioned new symmetry-based computer tools.

Within this framework, we have collected at the Bilbao

Crystallographic Server, under the name MAGNDATA,

comprehensive information on more than 400 commensurate

and incommensurate magnetic structures (Fig. 1). MAGN-

DATA is intended to be a benchmark and starting point for a

complete database of magnetic structures, where magnetic

symmetry is systematically employed and the magCIF format

is the communication file format. Here, we present and discuss

its main features for the case of commensurate structures. We

concentrate on the information made available for each

structure, and the way this information can be retrieved and

analysed.

2. Description of commensurate magnetic structures

A magnetically long-range ordered structure can be consid-

ered fully determined if the available information unambigu-

ously defines the average position of any atom and its average

magnetic moment. In the case of a commensurate magnetic

ordering, this can be achieved by providing three basic data

items:

(i) The lattice unit cell that defines the periodicity of the

magnetic ordering, i.e. the so-called magnetic unit cell.

(ii) The magnetic space group (MSG) or Shubnikov group,

with the lattice described by (i), which defines the symmetry of

the phase.

(iii) The atomic positions (in relative units with respect to

the unit cell) and magnetic moments (if the atom is magnetic)

of a set of atoms in the unit cell that are not symmetry related

and form an asymmetric unit. From these symmetry-inde-

pendent atomic positions and magnetic moments, the position

and magnetic moment of any other atom in the unit cell can be

derived through the application of the symmetry operations of

the MSG defined in (ii).

This is the basic information that is stored for any of the

commensurate magnetic structures compiled in MAGN-

DATA, and it is an essential part of the corresponding

magCIF file that can be downloaded. These magCIF files are

supported by various programs, for example for visualization

using VESTA (Momma & Izumi, 2011) and Jmol (Hanson,

2013), for editing using ISOCIF (Stokes & Campbell, 2015) or

STRCONVERT (Perez-Mato et al., 2015), for analysis using

ISODISTORT (Campbell et al., 2006), or for further refine-

ment using experimental data and FullProf (Rodrı́guez-

Carvajal, 1993) or JANA (Petřı́ček et al., 2014).

research papers

J. Appl. Cryst. (2016). 49, 1750–1776 Samuel V. Gallego et al. � MAGNDATA. I. The commensurate case 1751

Figure 1
A screenshot showing a partial view of the online list with icons of the
magnetic structures stored in MAGNDATA.



As an example, Tables 1 and 2 present these three basic data

items for the magnetic structure of Ba2CoGe2O7 (Hutanu et

al., 2012), which is depicted in Fig. 2(a), as retrieved from

MAGNDATA, where it is entry 0.56. In the following, the

entry number of each example in MAGNDATA will be

indicated in parentheses with the symbol #, e.g. (#0.56). With

respect to the data in these tables the following remarks are

important.

2.1. Symmetry operations

The listed symmetry operations fully define the MSG of the

structure. They are given in a similar form to the symmetry

operations of space groups in conventional crystallography.

Each symmetry operation is described by the corresponding

transformation of a general position (x, y, z) (Hahn, 2002)

(second column in Table 1) or in the Seitz notation (Glazer et

al., 2014) (last column in Table 1). These operations in the first

format are the only obligatory data concerning symmetry in a

magCIF file. The only difference with respect to the symmetry

operations of ordinary space groups is that the presence or not

in the symmetry operation of the action of time reversal is also

indicated: in the first format this is achieved by means of an

additional symbol, �1 or +1, while in the Seitz notation a

prime symbol is added or not to the rotation or roto-inversion

symbol. As additional (redundant) information, the transfor-

mation of a magnetic moment (given in relative components

with respect to the unit-cell basis) through the action of the

symmetry operation is also listed (third column). The

symmetry operations are described with respect to the

magnetic unit cell that defines the lattice periodicity of the

spin arrangement. In this sense, we use in all cases the Belov–

Neronova–Smirnova (BNS) notation (Belov et al., 1957). In

the case of MSGs with antitranslations (i.e. operations

combining a translation and time reversal), the alternative

Opechowski–Guccione (OG) notation (Opechowski &

Guccione, 1965) uses unit cells that are often closer to the

reference lattice used in experiment, but in general they do

not define the lattice periodicity of the MSG. The OG notation

therefore requires a deviation from a straightforward exten-

sion of the group theoretical methods of ordinary crystal-

lography, where symmetry operations and atomic variables are

processed ‘modulo 1’ with respect to the employed unit cell.

We have preferred to avoid this complication and therefore

MAGNDATA has been developed in all aspects using the

BNS approach.

2.2. Magnetic space groups

In most cases we have used a unit cell that keeps the origin

and orientation of the crystallographic axes of the para-

magnetic phase. This is the reason why, in most cases, as in this

example, the MSG is in a non-standard setting. As the

symmetry information provided by MAGNDATA is the list of

symmetry operations in this non-standard basis, this causes no

particular problem and no ambiguity exists. The transforma-

tion from the used basis to a basis correponding to the stan-

dard setting of the MSG is given for each entry in the

collection under the heading ‘Transformation to standard

setting’.
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Table 1
Symmetry operations of the MSG describing the symmetry of the
magnetic structure of Ba2CoGe2O7 (#0.56; Hutanu et al., 2012).

These operations correspond to the MSG Cm0m20 (No. 35.167) in a non-
standard setting. The transformation to a standard setting is (a + b, �a + b, c;
1
2 ; 0; 0).

No. x, y, z, �1 mx, my, mz Seitz notation

1 x, y, z, +1 mx, my, mz {1|0}
2 y + 1

2, x + 1
2, z, +1 �my, �mx, �mz {m110|12 ;

1
2 ; 0}

3 �x, �y, z, �1 mx, my, �mz {20001j0}
4 �y + 1

2, �x + 1
2, z, �1 �my, �mx, mz {m0110| 1

2 ;
1
2 ; 0}

Figure 2
(a) The magnetic structure of multiferroic Ba2CoGe2O7 (Hutanu et al.,
2012) retrieved from MAGNDATA (#0.56). A magnetically induced
ferroelectric polarization along c is symmetry allowed. (b) An alternative
model with the same but rotated spin arrangement, which has different
magnetic symmetry and no multiferroic character. The associated MSG is
indicated below each panel. The basis transformation in parentheses
beside the MSG label transforms the MSG to its standard setting.

Table 2
Positions and magnetic moments of symmetry-independent atoms in the
magnetic structure of Ba2CoGe2O7 (#0.56; Hutanu et al., 2012).

Unit cell a = 8.46600, b = 8.46600, c = 5.44500 Å, � = 90, � = 90, � = 90�. MSG
Cm0m20 (a + b, �a + b, c; 1

2 ; 0; 0). Magnetic moment components are given in
Bohr magnetons.

Magnetic atoms.

Label
Atom
type x y z

Multi-
plicity

Symmetry
constraints
on M Mx My Mz |M|

Co Co 0.0 0.0 0.0 2 mx, my, 0 2.05 2.05 0.0 2.90

Non-magnetic atoms.

Label Atom type x y z Multiplicity

Ba_1 Ba 0.83464 0.33466 0.50765 2
Ba_2 Ba 0.33464 0.16536 0.49235 2
Ge_1 Ge 0.64073 0.14073 0.95981 2
Ge_2 Ge 0.14073 0.35927 0.04019 2
O1_1 O 0.00000 0.50000 0.15942 1
O1_2 O 0.50000 0.00000 0.84058 1
O2_1 O 0.63791 0.13793 0.27045 2
O2_2 O 0.13791 0.36209 0.72955 2
O3_1 O 0.07906 0.18446 0.18857 4
O3_2 O 0.18446 0.92094 0.81143 4



In other words, the MSG defined by the listed operations in

Table 1 is necessarily one of the 1651 Shubnikov groups, but its

setting, i.e. the form of the operations, does not necessarily

coincide with the one that is used in the listings of the MSGs

that we can take as standard (Litvin, 2013; Stokes & Campbell,

2011; Bilbao Crystallographic Server, 2013). In the example

above, if the change in unit cell and origin (a + b, �a + b, c;
1
2 ; 0; 0) is done, the symmetry operations transform into the

BNS standard form of the MSG with the label Cm0m20 and

BNS number 35.167 (Bilbao Crystallographic Server, 2013).

This means that the ao and bo basis vectors of the standard

orthorhombic unit cell are given by the oblique vectors a + b

and �a + b, respectively, while the origin should be shifted by

a/2. We can summarize this information by saying, in short,

that the symmetry of this structure is given by the MSG

Cm0m20 (a + b, �a + b, c; 1
2 ; 0; 0). Having computer-readable

standard listings of all MSGs, this is the notation that can be

used to define unambiguously any MSG under any setting.

Notice, however, that the transformation to the standard

setting is in general not unique, and different choices of unit

cell and origin are possible for a standard setting of the MSG.

In general, the transformation to standard setting given in

each case is just one of the many possible ones.

The label provided for the relevant MSG is in fact not

needed for describing the structure, as the listed set of

symmetry operations of the MSG is sufficient to define the

MSG that should be used to build up the full structure. The

assignment of a standard label and a transformation to the

MSG standard setting are, however, included in the magCIF

file and in the database as additional complementary infor-

mation. This summarizes the symmetry properties of the

structure in a short unambiguous form and, for instance, the

list of symmetry operations in Table 1 could be obtained by

the application of the inverse of the transformation (a + b,

�a + b, c; 1
2 ; 0; 0) to the BNS standard form of the operations

of the MSG Cm0m20 (No. 35.167), which are retrievable from

the databases available on the internet (Bilbao Crystal-

lographic Server, 2013; Stokes & Campbell, 2011). Thus

Table 2, with its heading that defines the unit cell, and the

MSG label together with the transformation to its standard

setting, can be considered a complete, unambiguous and

robust form to report the magnetic structure, without the need

for Table 1.

2.3. The metrics of the unit cell

As the paramagnetic phase is tetragonal and no ortho-

rhombic strain has been detected, the unit cell of the example

above has tetragonal metrics despite the MSG being ortho-

rhombic. This is a common situation, as magnetoelastic

couplings are usually very weak and the symmetry break,

which in principle is relevant for all degrees of freedom, is

often not observed in the lattice. However, it is important to

know that, according to the symmetry of the phase, an

orthorhombic strain of the unit cell is possible. From the

orientation of the standard unit cell of the MSG, one can see

that this symmetry-allowed strain is in fact a shear strain,

namely a deviation of the � angle from 90�, while the a and b

parameters must keep equal values.

2.4. Positions and magnetic moments of the symmetry-
independent magnetic atoms

The magnetic moments of the magnetic atoms are given as

components (in Bohr magnetons) along the a, b and c unit-cell

basis vectors. Other alternative parameterizations of the

magnetic moments are included in the magCIF dictionary, but

they have not been implemented in this database. As shown in

Table 2, we list not only the positions and magnetic moments

of the symmetry-independent magnetic atoms, but also the

symmetry constraints acting on the magnetic moments. It can

then be seen that, although according to the model the

magnetic moments are aligned along the (1, 1, 0) direction, a

deviation from this direction is symmetry-allowed.

2.5. Positions and magnetic moments of all atoms in the unit
cell

Optionally, MAGNDATA provides the positions and

magnetic moments of all the atoms in the unit cell. They are

derived from those in the asymmetric unit using the symmetry

operations of the MSG: if r and m are the position and

magnetic moment, respectively, of an atom in the asymmetric

unit, a symmetry operation {R | t} implies the presence of

another atom of the same species at r0 = Rr + t, with magnetic

moment given by det(R)R �m, while if the symmetry operation

is {R0 | t}, i.e. it includes time reversal, the magnetic moment

has an additional change of sign and is given by �det(R)R �m.

The listing that can be retrieved for the magnetic atoms of our

example is shown in Table 3. One can see in this table that the

additional symmetry-allowed moment component in the

orthogonal direction (1; 1; 0) breaks the collinearity of the

spin configuration and is ferromagnetic. Thus, one can predict

from the symmetry assignment that this structure is bound to

exhibit weak ferromagnetism on the ab plane, more specifi-

cally along (1; 1; 0). The possible existence of weak ferro-

magnetism can also be derived directly from the magnetic

point group symmetry associated with the MSG (see below).

2.6. Atomic positions of non-magnetic atoms

In principle, the MSG of a commensurate magnetically

ordered phase describes the symmetry constraints of all

degrees of freedom, not only of the magnetic ones. Thus, the

atomic positions of all the non-magnetic atoms are also

derived from those listed within the asymmetric unit by the
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Table 3
Full set of symmetry-related atoms in the unit cell, and their magnetic
moments, generated from the symmetry-independent Co atom listed in
Table 2 (MAGNDATA #0.56), as retrieved from MAGNDATA.

Atom x y z

Symmetry
constraints
on M Mx My Mz

1 0.00000 0.00000 0.00000 mx, my, 0 2.05 2.05 0.0
2 0.50000 0.50000 0.00000 �my, �mx, 0 �2.05 �2.05 0.0



action of the MSG operations, knowing that the presence or

not of time reversal in the operation is irrelevant for the non-

magnetic degrees of freedom. The positions and occupancies

of all atomic sites are therefore subject to an effective ordinary

space group that can be derived from the relevant MSG by

eliminating the presence or not of time reversal in its opera-

tions. The effective space group in the above example is

therefore Cmm2 (a + b, �a + b, c; 1
2 ; 0; 0), with the same

transformation to its standard description as for the MSG. As

the parent paramagnetic phase of this compound has space

group P421m, some atomic sites are split with respect to the

paramagnetic structure, and this is reflected in the listing of

Table 2 with the split atoms having composite numbers in their

labels, such as O1_1, O1_2 etc. Also, the unsplit Co atomic site

acquires some additional freedom, as the position is now free

along the polar c direction. The atomic positions listed in

Table 2 reflect all the positional degrees of freedom released

by the magnetic ordering that could in principle be relevant if

the magnetostructural coupling becomes important. It is in the

framework of this effective symmetry break P421m ! Cmm2

for the non-magnetic degrees of freedom that the multiferroic

properties of this material can be explained (Perez-Mato &

Ribeiro, 2011).

In most cases, the magnetostructural coupling is very weak

and the symmetry break for the positional structure associated

with the magnetic ordering, even if formally present, remains

undetected within the accuracy of the experimental data.

Thus, it is usual that the atomic positions of a magnetic

structure are modelled within a good approximation using the

constraints associated with the symmetry of the paramagnetic

phase, independently of the magnetic ordering producing or

not a symmetry break for the atomic positions. Most magnetic

structures are therefore refined considering the positional

structure and the spin configurations as two separate phases,

with the positional structure being modelled under the space

group of the paramagnetic phase. Often, the positional

structure is even assumed to be identical to that determined in

the paramagnetic phase. Although this type of approximation

is often justified, a unique common rigorous approach to all

structures, including those where a significant magneto-

structural coupling is observed, seemed more appropriate for

a database. We have therefore preferred to describe in all

cases all the degrees of freedom, both for atomic positions and

magnetic moments, under the symmetry constraints of the

MSG that is relevant for the reported magnetic arrangement.

This is the case for the example above where, despite having

an observable electric polarization, the accompanying struc-

tural distortion was too weak to be detected and the positional

structure was reported under the space group P421m. There-

fore, the symmetry-split atomic sites in Table 2 corresponding

to an effective Cmm2 space group are only virtual and have

been derived from the reported P421m positional structure.

This may seem inefficient for some purposes, but it has the

advantage of making explicit the structural degrees of

freedom that become free in the magnetic phase and which

must be taken into account in any eventual investigation of

magnetostructural effects.

2.7. Transformation from the original published data

A good number of the magnetic structures published in the

past or being published at present are determined using the

representation method (Bertaut, 1968; Izyumov et al., 1991)

without making use of or identifying the MSG of the resulting

magnetic structure. This has meant that, in many cases, we had

to reinterpret the spin arrangement of the original article and

transform it to the crystallographic symmetry-based descrip-

tion explained above. In this process, the identification of the

symmetry group of the reported structure was essential.

In order to identify the relevant MSG, instead of applying a

brute force search, a deductive process starting from the

knowledge of the parent symmetry and the propagation

vector(s) was followed. In most cases, this basic knowledge

was sufficient to reduce the possible MSGs to a quite limited

set of subgroups of the grey magnetic group associated with

the parent phase. These MSGs have a hierarchy according to

their group–subgroup relations, and are readily obtained using

computer tools such as MAXMAGN or k-SUBGROUPS-

MAG, also available on the Bilbao Crystallographic Server

(Perez-Mato et al., 2015). Using these programs, combined if

necessary with MAGMODELIZE, also available there, the

different spin-ordering models corresponding to the alter-

native possible symmetries could be obtained in a straight-

forward manner and compared with the reported structure. In

this way, the relevant symmetry was in general easily identi-

fied, and in most cases it was one of the (few) maximal

subgroups in the hierarchical tree of possible MSGs (see x5 for

an example). Once the appropriate magnetic symmetry had

been identified, the above-mentioned tools were also

employed to produce an appropriate magCIF file of the

magnetic structure.

2.8. Visualization and analysis

The output page for each structure includes a pair of figures

obtained with VESTA (Momma & Izumi, 2011). One of the

figures depicts all the atoms, while the second reduces the

graphical representation to the magnetic atoms. The VESTA

files corresponding to these figures can also be downloaded,

but in any case the latest versions of VESTA support the

magCIF format and commensurate magnetic symmetry.

Therefore, the magCIF file provided by MAGNDATA can be
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Figure 3
A screenshot of the online visualization of Mn3Pt (Krén et al., 1967)
(#0.109).



used directly as input for VESTA, which can be used to

visualize/analyse the structures.

A direct link to an online three-dimensional viewer that

uses Jmol (Hanson, 2013) is also available (see Fig. 3). This

online tool makes directly accessible the simplest and most

important commands of Jmol through specific buttons, while

the innumerable commands available to manipulate and

analyse the graphical representation can be applied through a

command window or pop-up console. The latest version of

Jmol fully supports MSGs and accepts magCIF files as input

files. Therefore, Jmol can also be used locally if the magCIF

file of the sructure is downloaded, provided that the user has

previously installed this free program.

3. Additional information

Apart from the minimal information necessary to build up the

magnetic structure in three-dimensional space, MAGNDATA

provides additional important data. This information is also

included in the corresponding magCIF file that can be

retrieved (local tags beyond the official magCIF dictionary are

used for some of the items). We list and discuss here the most

important items

3.1. Magnetic point group

The magnetic point group (MPG) associated with a

commensurate magnetic structure can be derived in a

straightforward manner from the knowledge of its MSG,

simply by taking the rotation or roto-inversion operations

combined (or not) with time reversal present in the group.

This is a very important piece of information, as the magnetic

point group governs the macroscopic crystal tensor properties.

For instance, the point group of Ba2CoGe2O7 (#0.56)

discussed above is m0m20 (No. 7.3.2) (Litvin, 2013) (in a non-

standard setting). MAGNDATA explicitly lists the operations

of the magnetic point group in the used setting (see Table 4).

A direct link to MTENSOR (another program on the

Bilbao Crystallographic Server) then allows the user to

explore, for this specific point group and the setting used, the

symmetry-adapted form of any macroscopic tensorial

magnetic, structural or magnetostructural property (see next

section). For the simplest properties in this example the results

are rather obvious: the point group is polar along the c

direction, while it allows ferromagnetism along the b direction

of the standard unit cell, i.e. the (1; 1; 0) direction in the basis

used. The parent symmetry being non-polar, the magnetic

point group symmetry is thus sufficient for the characteriza-

tion of the system as having a non-polar/polar symmetry break

and therefore as a type II multiferroic, where one can expect

some induced electric polarization and some weak ferro-

magnetism, in accordance with the discussion in x2.

One must be aware that, in general, the point group

symmetry of a magnetic structure not only is determined by

the spin arrangement but also depends on the positions of the

non-magnetic atoms: the simple spin arrangement depicted in

Fig. 2(a), if considered in a purely mono-atomic Co structure,

would have implied a rather different MSG and point group,

which would forbid both ferroelectricity and weak ferro-

magnetism. Only the presence of the non-magnetic atoms

reduces the parent symmetry, and as a consequence also the

symmetry of the magnetic structure, to the MSGs discussed

above.

It is also important to remark that both the MSG and the

corresponding magnetic point group, and therefore also the

multiferroic properties of this particular example, depend on

the orientation of the collinear spin arrangement (see Fig. 2).

The MSG, and as a consequence the magnetic point group,

change if this orientation is changed. For instance, if the spins

align along the a direction, the MSG changes to P2121
020 (�b,

a, c; 0, 0, 0), with point group 20202 (a, �c, b), which is non-

polar, but it also has a ferromagnetic (FM) component allowed

along the b direction, perpendicular to the direction of the

antiferromagnetic (AFM) arrangement (Perez-Mato &

Ribeiro, 2011). An electric polarization is not possible for this

configuration and therefore magnetically induced ferro-

electricity, which can be present for the oblique orientation of

the spins, is forbidden for this alternative orientation. One can

then predict that an external magnetic field rotating on the ab

plane, through its coupling with the weak FM component,

should induce the rotation of the AFM spin arrangement and

a switch between the two limiting polar and non-polar

symmetries, producing a sinusoidal oscillation of the induced

electric polarization along c. This is indeed what is observed

experimentally (Murakawa et al., 2010).

Although the magnetic anisotropy may favour some specific

direction, and hence some specific MSGs, it is sometimes

difficult, as in this example, to determine the absolute orien-

tation of the spins and, even if that is experimentally feasible,

this orientation may be easily manipulated with external fields.

In practice, this can mean some uncertainty over the actual

MSG of the magnetic phase and the corresponding point

group. In these ambiguous cases, we have generally assumed a

spin orientation that maximizes the resulting magnetic

symmetry. Known macroscopic properties, as shown in this

example, can help to avoid ambiguities over the relevant MSG.

3.2. Parent space group and relation of the basis used to that
of the parent phase

By definition, a magnetic structure is distorted with respect

to a so-called parent structure without magnetic order. This is

independent of the magnetic phase being accessible directly
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Table 4
Symmetry operations of the magnetic point group of Ba2CoGe2O7

(Hutanu et al., 2012) as given in MAGNDATA (#0.56).

These operations form the magnetic point group m0m20 (No. 7.3.2) in a non-
standard setting. The transformation to a standard setting is a + b, �a + b, c.

No. x, y, z, �1 mx, my, mz Seitz notation

1 x, y, z, +1 mx, my, mz 1
2 y, x, z, +1 �my, �mx, �mz m110

3 �x, �y, z, �1 mx, my, �mz 20001

4 �y, �x, z, �1 �my, �mx, mz m0110



from a paramagnetic phase or being bordered in the phase

diagram by other magnetic phases. Although a magnetic

structure is in principle fully defined using the data discussed

in the previous section, the knowledge of the symmetry of its

parent paramagnetic structure is fundamental to characterize

the possible domains and the switching properties of the

system. Therefore, this parent space group is included as

additional information. If the parent structure has been

considered in a non-standard setting, the transformation of its

basis to the standard setting is also given.

In the above example of Ba2CoGe2O7 (#0.56), the parent

space group is P421m, with the same unit cell and origin as

those employed to describe the magnetic structure. This

means that the magnetic phase results from a symmetry break

that can be represented as

P421m ! Cm0m20 ap þ bp;�ap þ bp; cp ; 1
2; 0; 0

� �
; ð1Þ

where the transformation to the standard setting is now

described with respect to the basis of the parent phase. The

index of the MSG Cm0m20, as a subgroup of the parent grey

tetragonal magnetic space group P421m10 of the paramagnetic

phase, is 4, and therefore four domain types are possible.

Removing the trivial ones related by time reversal and having

all spins reversed, one has to consider two distinct non-trivial

domains related, for instance, by the lost operation

{4001 j 0; 0; 0}. This means that the two domains will have their

spins rotated by 90� and opposite electric polarization along c.

This switching property is directly related to the symmetry of

the parent phase. A magnetic structure with the same

symmetry Cm0m20, and for instance a parent space group

Cmmm10, would have different switching properties, having

the spins in the two non-trivial domains related by space

inversion.

The database includes information about the relation of the

bases used for the reference parent phase and the magnetic

unit cell. This is given under the heading ‘Transformation from

parent structure’. In the example above this transformation is

the identity, i.e. (a, b, c; 0, 0, 0). As a more complex example,

we show in Fig. 4 the case of Ba3Nb2NiO9 (Hwang et al., 2012)

(#1.13). Here, the parent space group is P3m1 and the

propagation vector of the magnetic ordering is (1
3 ;

1
3 ;

1
2). The

magnetic unit cell that we use keeps the orientation and origin

of the parent unit cell. Therefore, the indicated ‘Transforma-

tion from parent structure’ is (3a, 3b, 2c; 0, 0, 0). This is not a

standard setting for the MSG Pc31c of the structure, and under

the heading ‘Transformation to a standard setting’ the trans-

formation (2
3 a + 1

3 b, � 1
3 a + 1

3 b, c; 1
9 ;

2
9 ; 0) is indicated. One

should be aware that the first transformation refers to the

parent basis, while the second one refers to the working

magnetic unit cell that is being used for the MSG. The three

bases/unit cells can be visualized online, as shown in Fig. 4.

Combining the two basis transformations (from parent unit

cell to the used magnetic unit cell, and from the used magnetic

unit cell to a magnetic unit cell in a standard setting), the

symmetry break between the parent and the magnetic phase is

fully defined. Thus, in this example, the symmetry break is

P3m110 ! Pc31c 2ap þ bp;�ap þ bp; 2cp ; 1
3;

2
3; 0

� �
; ð2Þ

In most cases, the parent space group is clearly defined, as it

corresponds to the symmetry of the experimental para-

magnetic phase, and this structure is usually known and used

as a reference for the subsequent determination of the

magnetic structure. However, if the paramagnetic structure

also includes some structural distortion with respect to a

higher symmetry, the concept of parent symmetry becomes

ambiguous and the formal choice of a parent space group is

not unique. In these cases, we have usually considered as the

parent structure the one that was used as a reference for the

magnetic diffraction in the article reporting the structure.

However, in some exceptional cases a better choice was

detected and a different parent symmetry has been consid-

ered. This may happen, for instance, in magnetic phases where

the presence of a concomitant structural distortion has led to

the use of the distorted structure as a reference for the

refinement of the magnetic diffraction data.

3.3. Propagation vector(s)

The propagation vectors that are active as primary wave-

vectors of the magnetic ordering are part of the character-

ization of a magnetic phase. These wavevectors can be derived

in a straightforward manner from knowledge of the MSG and

the parent space group of the magnetic structure, and the

relation of their respective unit-cell bases. In practice,

however, the propagation vectors are directly accessible in

diffraction experiments, and knowledge of them is usually the

first step in the process of determining the magnetic structure.

Thus, although the form in which the magnetic structures are

described in MAGNDATA does not require the explicit

definition of these propagation vectors, this information is

included as an important complementary feature which is

directly related to the experiment. If the magnetic arrange-

ment includes spin waves with wavevectors corresponding to

harmonics of a primary propagation vector, they are also

listed.

The components of the propagation vectors are given in the

reciprocal conventional basis of the parent space group. In our

first example of Fig. 1, the propagation vector is k = (0, 0, 0),

which means that magnetic ordering keeps the lattice of the
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Figure 4
The spin arrangement in the magnetic structure of Ba3Nb2NiO9 (#1.13)
reported by Hwang et al. (2012), as given by the online Jmol visualization
tool of MAGNDATA, showing (a) the magnetic unit cell used and the
parent unit cell, and (b) the magnetic unit cell used and that
corresponding to the standard setting of the MSG.



parent structure, and neutron magnetic diffraction peaks will

superpose with the nuclear ones. In Fig. 4, the propagation

vector is (1
3 ;

1
3 ;

1
2).

The propagation vectors are used in this collection as the

most basic feature for classifying the magnetic structures, and

this is reflected in the entry labels. The structures are divided

into six fundamental classes:

Class 0. Magnetic structures with a null propagation vector

[k = (0, 0, 0)] which keep the lattice of the parent structure,

and their MSG is necessarily of type I or III (Bradley &

Cracknell, 1972), which means that the MSG does not include

antitranslations of type {10 | t} (i.e. combinations of translations

with time reversal).

Class 1. Commensurate magnetic structures with a single

primary nonzero propagation vector k, such that nk is a

reciprocal lattice vector of the parent space group, with n

even. The MSGs of these structures are necessarily of type IV

(Bradley & Cracknell, 1972), i.e. they contain anti-translations

of type {10 | t}. Higher harmonics with wavevectors mk (m odd)

may be present in the spin arrangement (if these vectors are

not equivalent to k). The point group of these materials

includes time reversal, i.e. it is a grey point group, and

therefore linear magnetostructural effects are not possible.

Class 1.0. Commensurate magnetic structures with a single

primary nonzero propagation vector k, such that nk is a

reciprocal lattice vector of the parent space group, with n odd.

The MSGs of these structures are necessarily of type I or III

(Bradley & Cracknell, 1972), as in Class 0, but some lattice

translations of the parent structure are lost and the lattice of

the magnetic structure is described by a supercell of the parent

unit cell. As in the previous class, higher harmonics with

wavevectors mk (m odd) can be present in the spin arrange-

ment, and in this case these possible higher harmonics

necessarily include a wavevector equivalent to (0, 0, 0). This

means that some magnetic neutron diffraction peaks can

superpose with the nuclear ones if such a harmonic is present

in the spin arrangement.

Class 2. Commensurate magnetic structures with two

independent primary propagation vectors.

Class 3. Commensurate magnetic structures with three

independent primary propagation vectors. Among the struc-

tures in classes 2 and 3 with more than one primary propa-

gation vector, those having propagation vectors that are

symmetry-related by the MSG operations form an important

special set. However, the number of multi-k magnetic struc-

tures that are being reported is minimal, and therefore we

have not introduced further divisions within classes 2 and 3.

Class 1.1. Incommensurate magnetic structures with a single

primary incommensurate propagation wavevector. The

symmetry of magnetic structures with incommensurate

propagation wavevectors cannot be described using an MSG

or Shubnikov group. Their systematic description requires a

different methodology. Its symmetry can be described by a

magnetic superspace group (MSSG), similar to what happens

in the case of incommensurate non-magnetic crystals and

quasicrystals (Perez-Mato et al., 2012). The specific form in

which incommensurate magnetic structures are stored in

MAGNDATA using magnetic superspace symmetry is

described in detail in a separate publication (Gallego et al.,

2016).

3.4. Representation analysis

Commensurate magnetic structures are described in this

database under the framework and constraints associated with

their MSG, without using the so-called representation method

(Bertaut, 1968; Izyumov et al., 1991). However, once a

magnetic structure is described under its relevant MSG

symmetry and a corresponding magCIF file is prepared, the

symmetry mode decomposition of the magnetic structure with

respect to the parent structure, in terms of basis spin modes

corresponding to the different possible irreducible repre-

sentations (irreps) of the parent space group, can be done in a

straightforward manner with the program ISODISTORT

(Campbell et al., 2006). Following this procedure, we have

obtained for most structures of this collection their irrep mode

decomposition, and we have included a brief summary of the

magnetic irreps that are active in each phase and their

restrictions. Only in the trivial cases for which the assignment

of the MSG has a one to one correspondence with the

assignment of an irrep has this step often been skipped.

Table 5 lists a set of examples of the information provided

on the irrep mode decomposition. The irrep labels are those

provided by ISODISTORT. This labelling convention is

robust and unambiguous, and can be applied through

computer-readable irrep listings (Stokes et al., 2013). It has

been adopted by the Bilbao Crystallographic Server and by

JANA (Petřı́ček et al., 2014). This irrep labelling is also

consistent with the most extended notation for k vectors

corresponding to symmetry points, lines and planes of the

Brillouin zone (Aroyo et al., 2014). Note that the irreps

associated with spin modes, which are odd for time reversal,

are distinguished from the analogous non-magnetic ones,

which are even for time reversal, by means of the letter ‘m’ as

a prefix. For each active irrep, the dimensions of the small and

the full representations are given. The factor between these

two numbers is the number of k vectors in the star of the irrep

(Bradley & Cracknell, 1972; Stokes et al., 2013).

If the irrep is multidimensional, the direction of the

magnetic order parameter in irrep space is classified as either

‘general‘ or ‘special’. A ‘general’ order parameter direction

indicates that the MSG allows any arbitrary combination of

the irrep spin basis modes and the MSG is the minimum

magnetic symmetry compatible with this irrep distortion, i.e.

the so-called kernel of the irrep, in contrast with the higher

symmetries for some specific irrep subspaces, the so-called

irrep epikernels (Ascher, 1977). If the order parameter

direction is termed ‘special’, we mean that the symmetry

constraints of the MSG imply the restriction to some specific

linear combinations of the irrep spin basis modes, and there-

fore the spin degrees of freedom of the magnetic phase are

fewer than those provided by the full set of irrep spin basis

functions.
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In the case of irreps with more than one arm in their star of

k vectors and with k equivalent to �k, spin arrangements

restricted to a single k imply a special direction for the order

parameter of a rather trivial character. This restriction is

introduced automatically in the traditional representation

method, when the exploration of spin arrangements is limited

to those coming from the spin basis functions associated with a

single k of the irrep star. Non-trivial symmetry constraints in

1k magnetic structures that are not included in the traditional

representation method appear when the star of k vectors

includes the vector �k as non-equivalent and/or when the

small irrep is multidimensional. In both cases, the irrep

restricted to the symmetry operations that either keep k

invariant or change it into �k (the so-called extended small

space group) is multidimensional. The effective order para-

meter for the single-k spin arrangements is therefore multi-

dimensional in these cases and, for special directions within

the order parameter space, a higher MSG (irrep epikernel)

may be realized. These are the cases that are indicated in the

database as having a ‘special’ direction for the irrep, and they

are of interest because the correspondence between the MSG

and the irrep assignment is not one to one, with different

MSGs being possible for the same active irrep.

In the case of multi-k structures with several propagation

vectors belonging to the same irrep star, even if the small irrep

is one dimensional and k is equivalent to�k, special directions

of the order parameter with different MSGs can occur,

depending on the way the spin basis functions corresponding

to different propagation vectors of the irrep star are

combined. These structures are distinguished in the database

by denoting them as ‘special-2’ for the direction of the order

parameter.

The information on the irrep mode decomposition is

completed with the qualification of the active irreps which are

listed as ‘primary’ or ‘secondary’. A symmetry-allowed irrep

distortion is identified as primary if the spin modes can be

considered as the driving agent for the symmetry break of the

magnetic phase, while it is secondary if they are symmetry

allowed but their presence in the magnetic ordering can be

considered a secondary induced effect, which could be negli-

gible.

In most cases, only one irrep is compatible with the MSG of

the structure, and therefore its primary character is obvious.

This is the case for the first seven examples in Table 5, where

one can see that, when the small irrep is multidimensional, in

most cases the magnetic phase corresponds to a special irrep

direction, and therefore the description using the MSG implies

additional constraints. Other structures have an MSG that is

compatible with more than one magnetic irrep [see

Ca3LiOsO6 (#0.3; Calder et al., 2012) and subsequent entries in

Table 5], but one of the possible irreps is the primary one,

yielding the symmetry break in the observed MSG. The

distinction between primary and secondary irreps has rele-

vance only in this type of structure. Secondary irrep distor-

tions, although symmetry-allowed, are usually absent. They

can appear as weak secondary induced effects, and they are

often negligible. The absence of these secondary irrep

distortions implies that the effective number of spin degrees of

freedom of the structure decreases, with respect to those

allowed by the MSG, by constraining the model to the spin
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Table 5
Examples of the information available on the symmetry mode decomposition of the magnetic structures in MAGNDATA.

Compound Reference†
Parent space
group k vector(s)

Magnetic space
group Irrep(s) ds‡ df§

Order parameter
direction Action

MnTe2 (#0.20) (a) Pa3 (0, 0, 0) Pa3 (No. 205.33) mGM1 1 1 Primary

LiFeGe2O6 (#1.39) (b) P21/c (1
2, 0, 0) Pa21/c (No. 14.80) mY1+ 1 1 Primary

ErAuGe (#1.33) (c) P63mc (1
2, 0, 0) PCna21 (No. 33.154) mM2 1 3 Primary

Mn3Pt (#0.109) (d) Pm3m (0, 0, 0) R3m0 (No. 166.101) mGM4+ 3 3 Special Primary

Na2MnF5 (#1.55) (e) P21/c (0, 1
2, 0) Pbc (No. 7.29) mZ1 2 2 Special Primary

HoMnO3 (#1.20) ( f ) Pnma (1
2, 0, 0) Pbmn21 (No. 31.129) mX1 2 2 Special Primary

TbMn2O5 (#1.108) (g) Pbam (1
2 ; 0; 1

4) Cam (No. 8.36) mG1 2 4 General Primary

Ca3LiOsO6 (#0.3) (h) R3c (0, 0, 0) C20=c0 (No. 15.89) mGM3+ 2 2 Special Primary

mGM2+ 1 1 Secondary

NiO (#1.6) (i) Fm3m (1
2 ;

1
2 ;

1
2) Cc2/c (No. 15.90) mL3 2 8 Special Primary

mL2+ 1 4 Secondary

TmAgGe (#3.1) (j) P62m (1
2 ; 0; 0) P602m0 (No. 189.224) mM2 1 3 Special-2 Primary

(1
2 ;

1
2 ; 0)

(0; 1
2 ; 0)

FePO4 (#0.17) (k) Pnma (0, 0, 0) P212121 (No. 19.25) mGM1+ 1 1 Primary

mGM1� 1 1 Primary

Bi2MnRuO7 (#0.153) (l) Fd3m (0, 0, 0) Fd0d0d (No. 70.530) mGM4+ 3 3 Special Primary

mGM5+ 3 3 Special Primary

LuFe4Ge2 (#0.140) (m) P42/mnm (0, 0, 0) Pn0n0m (No. 58.399) mGM2� 1 1 Primary

GM2+ 1 1 Primary

mGM1� 1 1 Secondary

† References: (a) Burlet et al. (1997), (b) Redhammer et al. (2009), (c) Baran et al. (2001), (d) Krén et al. (1967), (e) Núñez et al. (1994), ( f ) Muñoz, Casáis et al. (2001), (g) Blake et al.
(2005), (h) Calder et al. (2012), (i) Ressouche et al. (2006), (j) Baran et al. (2009), (k) Rousse et al. (2003), (l) Martı́nez-Coronado et al. (2014), (m) Schobinger-Papamantellos et al.
(2012). ‡ Dimension of small irrep. § Dimension of full irrep.



degrees of freedom of the primary irrep. However, it is

important to remark that, in the traditional refinement

method, the possible presence of allowed secondary irrep

distortions may have been discarded a priori without an

experimental check. A combined application of magnetic

symmetry and representation analysis is especially recom-

mended in these structures. Representation analysis allows the

decomposition of the spin degrees of freedom within the

relevant MSG into primary and secondary ones, and the

performance of a controlled and systematic check of the

significance of possible secondary modes in the spin arrange-

ment. However, the identification of the relevant MSG for the

phase is a necessary previous step in order to ‘symmetry

adapt’ the spin basis modes of the primary irrep.

The explicit separation of the magnetic degrees of freedom

into primary and secondary ones (if these latter exist) within

the constraints of an MSG can be done using ISODISTORT.

In MAGNDATA, we have only included some information

about the number of degrees of freedom associated with each

irrep, and a flag indicating whether the secondary irrep is

really present with nonzero amplitude in the distortion. This

information does not pretend to be comprehensive. In any

case, users can always download the corresponding magCIF

and, with the CIF of the appropriate parent phase, obtain in a

few minutes with ISODISTORT (and previous transformation

with ISOCIF if the magCIF file is in a non-standard setting)

the symmetry mode decomposition of any of the commensu-

rate structures in MAGNDATA. A direct link to another

program on the Bilbao Crystallographic Server also provides a

survey of all compatible irreps (see next section).

Magnetostructural coupling is usually too weak to allow

observation of secondary non-magnetic structural displacive

distortion modes induced by the magnetic ordering. If they

exist in the reported structure, they have generally not been

included in the summary of the irrep mode decomposition of

the structure, which is limited to the magnetic irreps. Non-

magnetic irreps have only exceptionally been included in the

irrep summary, as for instance in the case of LuFe4Ge2 (#0.140;

Schobinger-Papamantellos et al., 2012). This compound is

reported to exhibit a structural phase transition simulta-

neously with the magnetic ordering. From its symmetry

properties one can deduce that the observed structural

distortion is not a magnetic induced effect, as this distortion

produces an additional symmetry break that must be taken

into account for the MSG of the magnetic phase. Therefore,

the non-magnetic irrep associated with this structural distor-

tion should be considered as a primary irrep, and it is listed

accordingly in the irrep summary.

3.5. Transition temperature and experiment temperature

If available, the transition temperature below which the

reported structure becomes stable is given. This usually

coincides with the Néel temperature of a paramagnetic–

antiferromagnetic phase transition, but in systems with

multiple magnetic phases the temperature given can be the

upper temperature bordering a neighbouring magnetic phase.

If available, the temperature at which the magnetic diffraction

data were measured (experiment temperature) is also listed.

3.6. References

Magnetic structures are often reported without providing a

detailed account of the atomic positional structure that has

been considered, or if provided, it may correspond to the

paramagnetic phase or to a measurement at a different

temperature from the one at which the magnetic ordering was

measured. In order to have as complete a description of the

magnetic structure as possible, we have in most cases used (if

available) the atomic positions from the same reference, as

retrieved from the Inorganic Crystal Structure Database

(ICSD, 2007), and the ICSD entry number is indicated. If not

available, an ICSD entry for the same compound (usually at

room temperature) has been employed. In other cases the

positional structure has been manually retrieved from the

reference. In general, one should be aware that atomic posi-

tions are often only approximate, as they may have been

determined independently of the magnetic ordering and under

different experimental conditions.

3.7. Comments

The comments that appear for a particular structure are

normally reduced to information on the experimental tech-

nique used for the data, details of the experimental conditions

or the phase diagram of the material, the existence of similar

structures etc. If the MSG corresponds to a so-called

k-maximal symmetry (Perez-Mato, 2015) (see next section),

this is also stated in the comments. The presence of a magnetic

structure in this collection should not be taken as a kind of

validation, as we have not performed any cross-check of the

proposed structures, and the only requirement was that the

model is self-consistent and unambiguous. In fact, the data-

base contains more than one model for some magnetic phases,

and they do not necessarily agree. If, according to our analysis,

a structure presents some contradictions, compared with

either the information given in the same publication or that in

other references, these problems are mentioned in the

comments. If the way that the structure has been reported

strongly indicates that it was fitted without fully exploring all

possible spin arrangements, or introducing some strong

aprioristic constraints, this may also be mentioned here.

4. Links to other programs

By means of direct links, the relevant data for any entry can be

introduced for further analysis into other programs of the

Bilbao Crystallographic Server. The most important linked

programs are the following:

STRCONVERT. This tool allows automatic online editing,

some transformations and different output formats.

MAGNEXT (Gallego et al., 2012). This program provides

the systematic absences to be expected on the non-polarized

neutron magnetic diffraction diagram due to the MSG of the

crystal. The program can also list the symmetry-forced form of
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the magnetic structure factor for special symmetry directions

or planes in reciprocal space. This information can be used to

derive additional systematic absences if the orientation of the

spins has constraints that are not dictated by the MSG.

Possible extra systematic absences due to the restrictions of

the magnetic sites to some specific Wyckoff positions are not

included. It is important to remark that the systematic

absences are expressed in terms of (h, k, l) indices with respect

to the reciprocal unit cell of the basis used for the description

of the magnetic structure in the present database. This unit cell

does not necessarily coincide with that considered in the

original publication.

MTENSOR. This program provides the symmetry-adapted

form of any crystal tensor property (equilibrium, optical or

transport properties). All kinds of crystal tensors (up to eighth

rank) can be consulted. The tensor constraints are derived

considering the magnetic point group of the structure in the

setting (in general non-standard) defined by the unit cell used

in the present database. For example, Fig. 5 reproduces the

output of MTENSOR for the linear magnetoelectric tensor

relating electric polarization and magnetic field for the case of

Ba2CoGe2O7 (#0.56), the example discussed in x2. From the

form of the magnetoelectric tensor, one can derive that the

application of a magnetic field along c is bound to induce some

electric polarization along the (1; 1; 0) direction, which is the

direction of the weak ferromagnetism. Alternatively, the

application of the magnetic field along this particular basal

direction induces some electric polarization along c, which

should be added to the ferroelectric spontaneous polarization

along this direction. Although in general this magnetoelectric

response may be difficult to disentangle from additional

magnetoelectric effects due to field-induced reorientation of

the spins and domain switching, one must be aware of its

existence when interpreting magnetoelectric experiments.

Through this link with MTENSOR, our database provides the

necessary information for any kind of crystal tensor property

that may be of interest. This program can also be used to

explore tensor switching properties when switching the system

to domain-related configurations.

MVISUALIZE. Apart from being a Jmol-based visualiza-

tion tool, with similar features to the online viewer mentioned

in x2, this separate program, which can work with any

magnetic structure introduced with a magCIF file, can be used

to produce domain-equivalent structures or to change the

description of the structure to any setting/unit-cell basis that

may be wished, including the standard setting.

From the knowledge of the parent space group and the

MSG of the structure, the program provides a complete set of

parent symmetry operations that, applied to the original

structure, produce all possible distinct domain-related

equivalent structures. These alternative domain-related

equivalent descriptions of the magnetic structure can then be

visualized and saved as magCIF files.

Let us consider the case of Cs2CoCl4 (#1.51; Kenzelmann et

al., 2002). The symmetry break of the magnetic ordering in this

compound is

Pnma10 ! Pa201 cp; ap; bp þ cp ; 0; 3
8;�

1
8

� �
; ð3Þ

with the propagation vector k = (0; 1
2 ;

1
2). The primitive

magnetic cell is duplicated with respect to that of the parent

lattice, while the point group symmetry reduces from the 16

operations of mmm10 to the four operations in 210. Hence the

index of the magnetic group, as a subgroup of the parent grey

group, is 8 and we should expect eight types of domain. The

domain-related structures are obtained by transforming the

structure stored in the database by the lost symmetry opera-

tions of the paramagnetic phase. Only a coset representative

for each of the eight cosets of the coset decomposition of the

MSG Pa21 with respect to the parent group Pnma10 is neces-

sary to obtain the eight distinct domain-related configurations

of the magnetic structure with respect to the parent para-

magnetic phase. After elimination of the trivial domains

obtained by switching all spins to opposite values by the action

of the lost time reversal, there are then four non-trivial

domains. This means that four distinct but equivalent

descriptions of the magnetic structure exist if the parent

paramagnetic phase is taken as a common reference.

MVISUALIZE makes a choice for this set of distinct non-

trivial coset representatives (see Fig. 6) and provides, if

desired, the magnetic structure models corresponding to each

of them (see Fig. 7).

Enumeration of the different domain-related descriptions is

very important when comparing structures proposed by
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Figure 5
The symmetry-adapted form of the magnetoelectric tensor (inverse
effect) relating electric polarization and magnetic field, in the form Pi =
�T

ijHj, for Ba2CoGe2O7 (MAGNDATA #0.56) as given by MTENSOR
through its link with MAGNDATA. Note that the setting of the
orthorhombic point group symmetry is not standard.

Figure 6
A screenshot of the ouput for Cs2CoCl4 (#1.51) listing the chosen set of
symmetry operations (coset representatives) in the magnetic phase,
whose action on the magnetic structure produces all the distinct non-
trivial domain-related spin arrangements, which are physically equivalent.



different studies or when refining the structure. It allows the

researcher to enumerate all possible models that are experi-

mentally indistinguishable because of their full equivalence.

Particularly in the case of powder diffraction, it is not

uncommon to confuse or mix these alternative descriptions of

the same model with physically different ones that may fit the

experimental data equally well. A systematic determination of

all domain-related descriptions not only precludes this

confusion, but can also help to detect pseudosymmetry in the

model. In Fig. 6 for instance, one can see that the inversion

symmetry is only broken by the slight canting of the spins. But

the spin z component of the Co atoms is 0.4 (2) Bohr

magnetons, compared with 1.6 (4) for the y component

(Kenzelmann et al., 2002). The spin canting that breaks the

centrosymmetry of the structure is therefore close to its

standard deviation. Cs2CoCl4 (#1.51) is one of the few

magnetic structures in MAGNDATA where the spin

arrangement associated with a single multidimensional irrep

corresponds to a general direction within the irrep, and the

symmetry is reduced to the irrep kernel (see Table 6 in x6).

Get_mirreps. This program provides a list of compatible

irreps for a given magnetic symmetry break from a parent grey

group. It includes all magnetic and non-magnetic irreps of the

parent grey group that are allowed to be active in a distorted

structure with the symmetry given by the input subgroup. The

corresponding wavevectors and special directions within the

irrep spaces are also indicated. Through the direct link to this

program, one obtains for each commensurate structure

information about all possible primary and secondary irreps

that can be relevant. It should be stressed that the program

lists all compatible irreps from the viewpoint of symmetry,

without considering the specificity of the structure. This means

that some of these irreps may be irrelevant, because they are

not present in the irrep decomposition of the degrees of

freedom of the structure.

5. Trend to maximal symmetry: the example of
pyrochlore-type structures

A general principle of maximal symmetry is generally at work,

and the symmetry of the majority of the structures that are

being reported is given by a ‘maximal subgroup’ among the set

of possible ones. These most favourable MSGs can be termed

‘maximal’ in the sense that there is no supergroup (subgroup

of the parent grey symmetry) that fulfils the same conditions.

If only the compatibility condition with the observed propa-

gation vector(s) is taken into account, we denote these most

favourable MSGs as ‘k-maximal subgroups’, ‘k-maximal

MSGs’, ‘k-maximal symmetries’ etc. (Perez-Mato et al., 2015).

However, the compatibility condition can be more restrictive

if the magnetic atoms occupy special Wyckoff positions, and

some of the MSGs compatible with the observed propagation

vector(s) can be discarded, either because they force a null

magnetic moment at all magnetic sites or because they do not

represent any additional degree of freedom with respect to

those already allowed by a supergroup.

As an example, Fig. 8 shows the possible MSGs for a

magnetic structure with parent space group Fd3m (parent

MSG Fd3m10), zero propagation vector, and magnetic atoms

at the positions 16c (0, 0, 0) and/or 16d (1
2 ;

1
2 ;

1
2). The figure

shows the group–subgroup hierarchy among all the possible

symmetries which could be realized. This is the relevant

scenario for all magnetic orderings in pyrochlore-type struc-

tures that do not break the parent lattice periodicity. In the

figure, one can see that there are six possible maximal

symmetries in the sense explained above, and three of them

are realized in some of the collected structures. Fig. 9 depicts

some examples. Although we could not find any experimental

structure with any of the other three maximal symmetries, one

should be aware that these magnetic structures are often

determined with ‘trial and error’ methods, and in some cases it

is doubtful that all possible alternative arrangements have

been explored and cross-checked. In other cases, powder

diffractometry is unable to distinguish between alternative

spin modes or their combination, and an arbitrary choice has

been made among indistinguishable (but different) config-

urations (Wills et al., 2006).

Only three of the ten pyrochlore-type zero-field magnetic

phases with 16c or 16d as the magnetic site and with k = 0,

which are present in MAGNDATA, do not possess a maximal

symmetry in the sense explained above. Two of them have the

symmetry I41
0/am0d. As shown in Fig. 8, this group is a

subgroup of Fd3m0 and is therefore not maximal among the

possible subgroups. It is, however, maximal among the

possible symmetries for magnetic ordering if, according to
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Figure 7
Graphical representation of the four non-trivial domain-related equiva-
lent descriptions of the magnetic structure of Cs2CoCl4 (#1.51), as
obtained using the corresponding link in MAGNDATA. Only the
magnetic atoms within a parent unit cell are shown. The spins are
repeated in consecutive parent cells with the same or opposite
orientation, according to the set of centring translations and anti-
translations of the corresponding MSG or, equivalently, according to the
phase factor for the propagation vector k = ð0; 1

2 ;
1
2Þ. The lost symmetry

operation (coset representative listed in Fig. 6) that has been employed to
generate the transformed structure is indicated below each case. Four
additional domains, trivially related to those in the figure through the
switch of the direction of all spins, complete the set.



Landau theory (see x3 above), it is assumed to be triggered by

a single irrep. As shown in Fig. 10, this subgroup is indeed one

of the two possible maximal symmetries resulting from a spin

arrangement according to the two-dimensional irrep GM3+.

In general, all maximal MSGs for a given propagation vector

and specific magnetic sites are maximal irrep epikernels, but

the reverse is not true. Some irrep epikernels of maximal

symmetry may be subgroups of one or more MSGs, which are

epikernels (or kernels) for another irrep. This is the case in

Fig. 10 for the MSG I41
0/am0d, which is a subgroup of Fd3m0,

the kernel of irrep mGM2+ (see Fig. 8). This means that this

MSG allows the presence of a secondary mGM2+ spin mode

of symmetry Fd3m0, apart from the primary irrep mode

corresponding to mGM3+.

The structure of Bi2RuMnO7 (#0.153; Martı́nez-Coronado

et al., 2014) is the only one of the pyrochlore-type structures

that could not be classified as having maximal symmetry, in the

broad sense summarized in Fig. 8, or in the restrictive sense of

a maximal epikernel of a single irrep, as described by Fig. 10.

As can be seen in the irrep decomposition summary of this

simple collinear structure, this model represents the super-

position of spin modes corresponding to two different irreps,

namely mGM4+ and mGM5+ (see Table 5), and it is therefore

not simple from this viewpoint. It is not clear if the collinearity
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Figure 10
Possible MSGs (epikernels and kernel) for spin arrangements according
to the two-dimensional irrep mGM3+ of Fd3m (#227), with k = 0, showing
their group–subgroup relationship. Maximal subgroups are surrounded
by black ovals. One single group for each conjugacy class of equivalent
subgroups is shown. (Obtained with k-SUBGROUPSMAG; Perez-Mato
et al., 2015.)

Figure 9
Examples of magnetic structures in MAGNDATA having one of the
maximal symmetries indicated in Fig. 8, corresponding to Cd2Os2O7

(Yamaura et al., 2012), Gd2Sn2O7 (Wills et al., 2006) and Ho2Ru2O7

(Wiebe et al., 2004).

Figure 8
Possible symmetries for a magnetic structure having a parent structure with space group Fd3m and a null propagation vector, with the magnetic atoms at
sites 16c ð0; 0; 0Þ and/or 16d ð12 ;

1
2 ;

1
2Þ. The symmetries are shown as subgroups of the parent grey MSG using standard BNS labels (Stokes & Campbell,

2011), indicating their group–subgroup relationship. Maximal subgroups are surrounded by black ovals. Only one MSG is shown for each conjugacy class
of physically equivalent subgroups. The symmetries realized by the experimental pyrochlore structures gathered in MAGNDATA are highlighted with
red ellipses in the case of maximal symmetries or with blue squares otherwise. (Obtained with k-SUBGROUPSMAG; Perez-Mato et al., 2015.)



was an a priori assumption or whether more complex models

were explored during the refinement. In any case, the authors

reporting the structure seem to be unaware of the fact that the

proposed collinear model, despite its apparent simplicity,

implies the presence of two active primary irreps.

From this example, it becomes clear that an efficient

methodology for the structure determination of such a type of

complex phase would require the systematic contrast of the

experimental data with each of the models corresponding to

all possible alternative maximal symmetries, monitoring

within these symmetries the degrees of freedom corre-

sponding to different irreps if more than one is allowed, and

eventually descending to lower MSGs, if necessary.

6. A survey of the collection

MAGNDATA includes a set of sampling and search tools that

can be used to explore various properties among the more

than 370 collected commensurate structures. Here, we

summarize some of the features that can be explored with

these tools.

6.1. Experimental technique

While neutron powder diffraction is the main technique for

the determination of most of the structures, about one-fifth of

them are based on data from neutron single-crystal experi-

ments.

6.2. Structures with a single active primary one-dimensional
irrep

About 95% of the structures are single-k structures, and

50% of them have a one-dimensional order parameter trans-

forming according to an irrep which is one-dimensional when

restricted to the subspace of spin arrangements with the

observed propagation vector. In the language of representa-

tion analysis, this means that the small irrep is one-dimen-

sional and the propagation vectors k and �k are equivalent.

These are the most simple magnetic structures. The MSG is

necessarily k maximal in the sense explained in previous

sections, and space inversion symmetry is necessarily

conserved if existing in the parent phase. Apart from the

domains corresponding to possible symmetry-related distinct

propagation vectors, only two types of domain exist, which are

trivially related by time reversal (switch of all the spins).

6.3. Structures with a single primary multidimensional irrep
active

About 100 single-k structures have a primary irrep which is

multidimensional when restricted to the subspace of spin

arrangements for the given propagation vector. The relevant

MSG in about 80% of these structures corresponds to an irrep

epikernel of maximal symmetry (see xx4 and 5). This means

that the spin arrangement includes symmetry-dictated

constraints restricting the possible combination of the irrep

basis functions. In these structures, the effective point group

for the non-magnetic degrees of freedom is lower than the set

of parent point group operations keeping the propagation

vector invariant, and non-trivial orientational domains with

the same propagation vector exist.

6.4. Structures with maximal symmetry

About 76% of the single-k commensurate structures have a

k-maximal symmetry, and if one adds those with their

symmetry given by a maximal epikernel of a multidimensional

irrep that is not k maximal, the number of structures with

maximal symmetry within the constraint of a k vector or irrep

is about 85%. There are therefore about 15% of structures

with symmetries that are not maximal in either of these two

senses. These cases require either the action of two or more

primary irreps or some arbitrariness in the direction taken by

the magnetic order parameter, which in these exceptional

cases would not be fully dictated by symmetry.

6.5. Structures with exceptionally low symmetries

We could only detect eight structures where the direction of

the magnetic order parameter within the multidimensional

irrep is ‘general’ in the sense explained in x4, such that it does

not take one of the possible symmetry-dictated directions of

higher symmetry. These are listed in Table 6. Most of them are

rather complex structures with many spin degrees of freedom,

even if they are restricted to a single active irrep [see, for

instance, DyFe4Ge2 (#1.98; Schobinger-Papamantellos et al.,

2006) and Tm5Ni2In4 (#1.170; Szytuła et al., 2014) in Fig. 11].

Often, the articles accompanying the reports of these struc-

tures suggest that the MSG of the model has not been moni-

tored, and models with possible higher symmetries associated

with the epikernels of the irrep have not been explored and

contrasted with the proposed structure. In some cases, the

macroscopic properties of the phases also suggest the possi-

bility of a higher MSG and therefore a special direction for the

order parameter. This happens, for instance, with the multi-

ferroics BiMn2O5 (#1.75; Vecchini et al., 2008), and TbMn2O5

(#1.108) and HoMn2O5 (#1.109; Blake et al., 2005), where the

direction of the induced electric polarization is along one of

the orthorhombic directions, which would be consistent with

one of the irrep epikernels. In the case of BiMn2O5, such an
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Figure 11
The magnetic structures of DyFe4Ge2 (Schobinger-Papamantellos et al.,
2006) and Tm5Ni2In4 (Szytuła et al., 2014) as retrieved from MAGN-
DATA (#1.98 and #1.170). These models belong to the few (listed in
Table 6) where the magnetic symmetry realized is not maximal for the
active irrep.



alternative structure of higher symmetry has in fact been

reported in another study (#1.74; Muñoz et al., 2002).

Among this set of structures of exceptionally low symmetry,

there are also quite simple ones such as Cs2CoCl4 (#1.51;

Kenzelmann et al., 2002), already discussed in x4 (see Fig. 7),

where the general direction and the deviation from an MSG of

higher symmetry are due to a small spin canting, close to its

standard deviation. The spin arrangement of NiSb2O6 (#1.113;

Ehrenberg et al., 1998), depicted in Fig. 12(a), is also very

simple, but its simplicity is deceptive from the point of view of

magnetic symmetry. Non-collinear arrangements could

conserve higher symmetries, which correspond to the epi-

kernels of the only possible active irrep. Sketches of these

alternative models are also shown in Fig. 12. Certainly, the

prevalence of the exchange interaction in conjunction with

crystal anisotropy may favour the reported collinear

arrangement, despite its larger symmetry reduction. Never-

theless, sometimes it seems that the non-collinear models

corresponding to possible higher symmetries have not been

fully checked.

It should be remarked that there are also a few structures

where the order parameter direction is termed ‘general’ in the

database, but the irrep is a two-dimensional so-called ‘physi-

cally irreducible’ representation. Two-dimensional physically

irreducible representations do not possess special directions of

higher symmetry and have no epikernel, the maximal

symmetry being the irrep kernel, realized for any direction of

the order parameter. Therefore, in these cases, a general

direction for the order parameter is the only one possible, and

they have not been included in Table 6.

6.6. Structures with several primary irreps

Most of the structures are the consequence of an order

parameter transforming according to a single primary irrep, in

agreement with the usual assumption based on the Landau

theory of phase transitions. However, about 10% require the

action of two or more primary irreps. Table 5 lists the example

of FePO4 (#0.17; Rousse et al., 2003), where the spin

arrangement includes spin modes corresponding to two one-

dimensional irreps, the resulting MSG being the intersection

of the kernels of the two irreps, and therefore both irreps

being primary. The reason for the presence of two primary

irreps is often quite obvious, like the existence of two conse-

cutive phase transitions, or the independent ordering of two
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Table 6
Single-k magnetic structures where the multidimensional order parameter takes a general direction and the symmetry is not maximal for the relevant
irrep.

The dimension of the irrep restricted to the subspace of the k vector is given in the last column in parentheses, together with the label of the irrep.

Compound Reference† k vector Parent space group Magnetic space group Magnetic point group Irrep (dimension)

Cs2CoCl4 (#1.51) (a) (0; 1
2 ;

1
2) Pnma Pa21 (No. 4.10) 210 mT1 (2)

BiMn2O5 (#1.75) (b) (1
2 ; 0; 1

2) Pbam Cam (No. 8.36) m10 mU1 (2)

DyFe4Ge2 (#1.98) (c) (1
4 ;

1
4 ; 0) P42/mnm Pccc2 (No. 27.82) mm210 mSM4 (2)

TbMn2O5 (#1.108) (d) (1
2 ; 0; 1

4) Pbam Cam (No. 8.36) m10 mG1 (4)

HoMn2O5 (#1.109) (d) (1
2 ; 0; 1

4) Pbam Cam (No. 8.36) m10 mG1 (4)

NiSb2O6 (#1.113) (e) (1
2 ; 0; 1

2) P42/mnm PS1 (No. 2.7) 110 mR1+ (2)

NiS2 (#1.167) ( f ) (1
2 ;

1
2 ;

1
2) Pa3 PS1 (No. 2.7) 110 mR1+R3+ (4)

Tm5Ni2In4 (#1.171) (g) (0; 1
2 ;

1
2) Pbam Cam (No. 8.36) m10 mT1 (2)

† References: (a) Kenzelmann et al. (2002), (b) Vecchini et al. (2008), (c) Schobinger-Papamantellos et al. (2006), (d) Blake et al. (2005), (e) Ehrenberg et al. (1998), ( f ) Yano et al. (2016),
(g) Szytuła et al. (2014).

Figure 12
(a) A scheme of the collinear magnetic structure reported for NiSb2O6

(Ehrenberg et al., 1998) (#1.113) with the lowest possible symmetry,
despite its collinearity. Only the spins in a parent unit cell are shown; the
signs of the spins in consecutive unit cells are determined by the
propagation vector ð12 ; 0; 1

2Þ. Its MSG, and a transformation from the
parent tetragonal basis to its standard setting, are indicated below the
sketch. The magnetic sites at the origin and at the unit-cell centre are
symmetry independent and have their three spin components fully free.
(b) and (c) Alternative models with higher symmetry according to the
group–subgroup hierarchy of possible subgroups shown in part (d). In the
Pa21/c symmetry the two Ni sites are symmetry related, only one having
its three spin components free, and the arrangement is necessarily non-
collinear, except if the easy axis is either along b or on the ac plane. In the
case of the MSG Ca2/m the two sites are independent, with one having the
spin restricted along c and the other on the ab plane, also forcing either a
non-collinear arrangement or a null spin in one of the magnetic atoms.



different magnetic atoms, but in other cases it is not clear and

would require deeper investigation.

The case of La2O2Fe2OSe2 (#1.58; Reehuis et al., 2011)

shown in Fig. 13 is especially remarkable. This simple collinear

arrangement with propagation vector (1
2 ; 0; 1

2) involves two

primary irreps and breaks the space inversion of the parent

phase with space group I4/mmm. The reason is that any of the

irreps, if considered alone, would force a null spin in half of the

magnetic sites, which are located at Wyckoff position 4c of the

parent phase. Therefore, the collinear ordering of all atoms is

sufficient here to yield a symmetry break into polar symmetry

and the system, being a semiconductor, could be expected to

exhibit type II multiferroic properties with spin-driven

ferroelectricity (Perez-Mato et al., 2016). A similar situation,

where the reported collinear arrangement requires two

primary irreps, happens in Bi2RuMnO7 (#0.153; Martı́nez-

Coronado et al., 2014), already discussed in x5.

6.7. Collinearity and canting

About 50% of the collected structures are collinear, as

expected from the usually dominant exchange-type inter-

actions. In contrast with the unusual example of Fig. 13, these

collinear arrangements are often compatible with one of the

maximal MSGs. Their collinearity can even be part of the

constraints of the MSG and in such cases it is symmetry

protected [see, for instance, LiFePO4 (#0.95; Rousse et al.,

2003) or CrN (#1.28; Corliss et al., 1960)]. In most cases,

however, the MSG allows spin components that can break the

collinearity. In such cases, assuming collinearity reduces the

effective number of spin degrees of freedom with respect to

those really allowed by the relevant MSG. The identification

of the MSG identifies these possible spin cantings, which are

often too weak to be detected, especially in powder experi-

ments. Nevertheless, the collection in MAGNDATA includes

a good number of structures where they are significant and

have been fully characterized (see Fig. 14 for some examples).

These structures mostly come from single-crystal studies and it

is noticeable that, among the structures that have been

determined from single-crystal data, the models with

collinearity that is not forced by symmetry amount to only

about 10%. This percentage is much larger among the struc-

tures determined from powder data

An exceptional case is CoSe2O5 , where the results seem to

be in contradiction with the general trend: while a powder

diffraction study (Melot et al., 2010) reported the structure

represented in Fig. 14, with a considerable symmetry-allowed

spin canting, a more recent single-crystal study (#0.161;

Rodriguez et al., 2016) has refuted the existence of any

observable deviation from collinearity.

6.8. Weak ferromagnetics and ferrimagnetics

Any antiferromagnetic phase with a magnetic point group

compatible with homogeneous magnetization is susceptible to

exhibiting weak ferromagnetism. In other words, weak ferro-

magnetism can appear in any AFM phase where the cancelling

of the global magnetization is not symmetry dictated. In most

cases, the symmetry-allowed FM component is too weak to be

observed in diffraction experiments, but it is in general

detectable in macroscopic measurements. There are about 100

structures with MSGs allowing ferromagnetism, among them

the well known systems where weak ferromagnetism was first

analysed: �-Fe2O3 (#0.66; Hill et al., 2008), MnCO3 (#0.115;

Brown & Forsyth, 1967), CoCO3 (#0.114; Brown et al., 1973),

NiCO3 (#0.113; Plumier et al., 1983) and FeBO3 (#0.112;

Pernet et al., 1970). This large set of structures also includes

ferrimagnetic structures, which have more than one symmetry-

independent magnetic site, and have their easy axis along an

FM direction of the MSG. In principle, weak ferromagnetism

can be expected to be especially favourable if the symmetry-

allowed FM mode belongs to the same irrep as the primary
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Figure 13
The collinear magnetic structure of La2O2Fe2OSe2 (Free & Evans, 2010)
(#1.58) with an indication of the symmetry break with respect to the
paramagnetic phase. Two active primary irreps for the wavevector ð12 ; 0; 1

2Þ

are required in order to have non-null spins at all magnetic sites and the
symmetry reduces to a polar monoclinic MSG, with potential multiferroic
properties.

Figure 14
Examples of magnetic structures retrieved from MAGNDATA [MgV2O4

(#1.138; Wheeler et al., 2010), CoSe2O5 (#0.119; Melot et al., 2010) and
LiNiPO4 (#0.88; Jensen et al., 2009)] with significant spin canting
compatible with their MSG. Below each figure, the parent grey group
and the MSG of the structure are indicated, including the transformation
from the parent basis to the standard setting of the MSG.



AFM order parameter, and therefore can be linearly coupled

with it, as happens in the classical weak ferromagnets

mentioned above. The identification of the primary irrep and

its equality or not with that of the FM mode(s) can easily be

derived from the information available in MAGNDATA on

the irrep decomposition of each structure. In any case, the

large number of structures fulfilling the necessary symmetry

conditions shows that weak ferromagnetism can be a rather

common phenomenon, and it can be foreseen if the MSG of

the structure is identified.

6.9. Multiferroics

Structures with polar symmetry and with their polarity

being induced by the magnetic ordering can easily be retrieved

from the collection, by looking for entries with a polar point

group and a non-polar one for the parent phase. There are

about 40 entries with this property, and those that are insu-

lators fulfil the symmetry condition for being type II multi-

ferroics. They are bound to have some magnetically induced

electric polarization (whatever its size) with switching prop-

erties coupled with the magnetic order parameter. Many of

them are well known multiferroics, but the possible ferro-

electric character of a few additional ones has been shown for

the first time through the symmetry assignment done in this

database. A detailed discussion of these materials is the

subject of a separate article (Perez-Mato et al., 2016).

6.10. Magnetoelectrics

There are 56 non-polar structures that have an MSG which

forbids zero-field electric polarization but allows linear

magnetoelectricity in the case of insulators. Only 14 of them

have a transition above 80 K, and this is reduced further to

eight if compounds with known metallic properties are

excluded. These eight structures are listed in Table 7. The

publications where these structures were reported do not

mention their potential magnetoelectricity, with the exception

of the well known cases of Cr2O3 and Fe2TeO6.

6.11. Ferrotoroidics

In recent years, magnetic structures with spin arrangements

possessing a nonzero toroidal moment have become the

subject of special attention (Schmid, 2001; Spaldin et al., 2008;

Ederer & Spaldin, 2007). The development of a spontaneous

nonzero toroidal moment, being odd for time reversal and

space inversion, is considered a fourth primary ferroic order,

the so-called ferrotoroidicity, to be added to the traditional

ferromagnetism, ferroelectricity and ferroelasticity. The

possible presence of a nonzero toroidal moment in a magnetic

structure is restricted by its point group symmetry. The

number of magnetic point groups allowing a nonzero macro-

scopic toroidal moment is quite limited, namely 31 from the

122 possible magnetic point groups. About 60 structures, i.e.

15%, have one of these favourable symmetries. If one restricts

the sample further to magnetic phases where the symmetry

break is such that the primary magnetic order parameter

describing the symmetry break has the properties of a toroidal

moment, this number is further reduced. Table 8 lists the 29

structures from this set that do not allow electric polarization

and/or macroscopic magnetization and can thus be denoted

‘pure’ ferrotoroidic. All possible orientational domains of

these structures have a different orientation for the allowed

toroidal moment, and the magnetic order parameter is linearly

coupled with the so-called toroidal field (H � E). Domain

switching in these systems could in principle be possible with a

combined application of magnetic and electric fields.

6.12. Contrast with macroscopic properties

Consistency with observed macroscopic properties can be a

stringent test for a magnetic structure, and some of the models

collected here are clearly inconsistent from this viewpoint. For

instance, this is the case for LuFe2O4 (#1.0.7; Christianson et

al., 2008), which is claimed to be multiferroic, although the

symmetry of the reported structure is incompatible with spin-

driven or intrinsic ferroelectric properties. Something similar

happens with the model of Cu3Mo2O9 (#1.129; Vilminot et al.,

2009). Its 20220 point group symmetry would not allow the

ferroelectricity and weak ferromagnetism along a or c that is

reported in other work (Hamasaki et al., 2008; Hase et al.,

2015). Analogous situations were detected in other structures

like DyVO3 (#0.106; Reehuis et al., 2011), Co3TeO6 (#0.145

and #1.164; Ivanov et al., 2012) etc. In all such cases, the

consistency problem is briefly indicated in the comments.
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Table 7
Non-polar magnetic phases in MAGNDATA with a transition temperature above 80 K which allow linear magnetoelectric properties if non-metallic.

Magnetoelectrics that support nonzero electric polarization at zero field are excluded by the non-polar condition on the MSG. Compounds that, to our knowledge,
are metallic have also been excluded from the list.

Compound Reference† Parent space group Magnetic space group‡ Magnetic point group T (K)§

FePO4 (#0.17) (a) Pnma P212121 (No. 19.25) (ap, bp, cp; 0; 1
2 ;

3
4) 222 125

Cr2O3 (#0.59) (b) R3c R30c0 (No. 167.106) (ap, bp, cp; 0, 0, 0) 30m0 343
Cr2TeO6 (#0.76; #0.143) (c), (d) P42/mnm Pn0nm (No. 58.395) (ap, bp, cp; 1

2 ;
1
2 ;

1
2) m0mm 93

BaMn2Bi2 (#0.89) (e) I4/mmm I40/m0m0m (No. 139.536) (ap, bp, cp; 0, 0, 0) 40/m0m0m 390
CaMn2Sb2 (#0.92) ( f ) P3m1 C20/m (No. 12.60) (ap + 2bp, �ap, cp; 0, 0, 0) 20/m 83
Cr2O3 (#0.110) (g) R3c C20/c (No. 15.87) (1

3 ap + 2
3 bp �

4
3 cp, ap, � 1

3 ap �
2
3 bp + 1

3 cp; 0; 1
2 ; 0) 20/m 308

MnGeO3 (#0.125) (h) R3 R30 (No. 148.19) (ap, bp, cp; 0, 0, 0) 30 120
Fe2TeO6 (#0.142) (i) P42/mnm P42/m0n0m0 (No. 136.503) (ap, bp, cp; 0, 0, 0) 4/m0m0m0 219

† References: (a) Rousse et al. (2003), (b) Brown et al. (2002), (c) Zhu et al. (2014), (d) Kunnmann et al. (1968), (e) Calder et al. (2014), ( f ) Ratcliff et al. (2009), (g) Fiebig et al. (1996), (h)
Tsuzuki et al. (1974), (i) Kunnmann et al. (1968). ‡ For the magnetic space group, the transformation to its standard setting from the parent basis is indicated. § Transition
temperature.



6.13. Secondary modes: higher harmonics
The MSG of about 10% of the structures allows the

presence of secondary irrep spin modes, i.e. spin modes

transforming according to an irrep which is not that of the

order parameter. These spin modes are not necessary for the

symmetry break, but they are symmetry allowed and may be

present in the structure as a secondary induced effect. These

secondary irrep spin distortions, which are expected to be very

weak, remain unobserved in most cases, but one must take

into account that the traditional representation method used

in the refinements, which only considers possible models

subject to a single irrep, implies their a priori exclusion. In any

case, structures with MSGs that allow secondary modes are

those where a combined application of the constraints coming

from the relevant MSG and from the assumption of a single

primary irrep is most convenient, in order to reduce the

number of degrees of freedom with respect to the sole appli-

cation of the MSG symmetry relations.

It is remarkable that secondary modes, generally absent,

have large amplitudes in structures where they have been

forced a priori in the refined model. For instance, this is the

case for structures that allow secondary modes corresponding

to higher harmonics of the propagation vector, i.e. cases where

3k is not equivalent to k. The 11 structures classified with the

labels 1.0.xxx in MAGNDATA are all of this type. Many of

these structures are modelled assuming collinear spin

arrangements, where the spin modulus and orientation are

maintained at all sites and only its direction can switch sign.
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Table 8
Magnetic structures in MAGNDATA that can be classified as ‘pure’ ferrotoroidic phases, with their magnetic order parameter having the transformation
properties of a toroidal moment, and the presence of a spontaneous electric polarization and/or macroscopic magnetization being symmetry forbidden.

Compound Reference† Parent space group Magnetic space group‡ Magnetic point group

U3Ru4Al12 (#0.12) (a) P63/mmc Cmcm0 (No. 63.461) (bp, �2ap � bp, cp; 0, 0, 0) m0mm
Gd5Ge4 (#0.14) (b) Pnma Pnm0a (No. 62.444) (ap, bp, cp; 0, 0, 0) m0mm
EuTiO3 (#0.16) (c) I4/mcm Fm0mm (No. 69.523) (ap � bp, ap + bp, cp; 0; 1

2 ;
1
2) m0mm

MnTiO3 (#0.19) (d) R3 R30 (No. 148.19) (ap, bp, cp; 0, 0, 0) 30

DyB4 (#0.22) (e) P4/mbm Pb0am (No. 55.355) (bp, �ap, cp; 0, 0, 0) m0mm
LiFeSi2O6 (#0.28) ( f ) P21/c P21/c0 (No. 14.78) (ap, bp, cp; 0, 0, 0) 2/m0

RbyFe2�xSe2 (#0.54) (g) I4/m I4/m0 (No. 87.78) (ap, bp, cp; 0, 0, 0) 4/m0

KyFe2�xSe2 (#0.55) (h) I4/m I4/m0 (No. 87.78) (ap, bp, cp; 0, 0, 0) 4/m0

Cr2WO6 (#0.75) (i) P42/mnm Pn0nm (No. 58.395) (bp, �ap, cp; 0, 0, 0) m0mm
Cr2TeO6 (#0.76) (i) P42/mnm Pn0nm (No. 58.395) (ap, bp, cp; 1

2 ;
1
2 ;

1
2) m0mm

KMn4(PO4)3 (#0.86) (j) Pnam Pnma0 (No. 62.445) (ap, cp, �bp; 0, 0, 0) m0mm
NaFePO4 (#0.87) (k) Pnma Pnma0 (No. 62.445) (ap, bp, cp; 0, 0, 0) m0mm
LiNiPO4 (#0.88) (l) Pnma Pnm0a (No. 62.444) (ap, bp, cp; 0, 0, 0) m0mm
CaMn2Sb2 (#0.92) (m) P3m1 C20/m (No. 12.60) (ap + 2bp, �ap, cp; 0, 0, 0) 20/m
LiFePO4 (#0.95) (n) Pnma Pnma0 (No. 62.445) (ap, bp, cp; 0, 0, 0) m0mm
Cr2O3 (#0.110) (o) R3c C20/c (No. 15.87) (1

3 a + 2
3 b � 4

3 c, a, � 1
3 a � 2

3 b + 1
3 c; 0; 1

2 ; 0) 20/m
CoSe2O5 (#0.119) (p) Pbcn Pb0cn (No. 60.419) (ap, bp, cp; 0, 0, 0) m0mm
MnGeO3 (#0.125) (q) R3 R30 (No. 148.19) (ap, bp, cp; 0, 0, 0) 30

TbGe2 (#0.141) (r) Cmmm Cm0mm (No. 65.483) (ap, bp, cp; 0, 0, 0) m0mm
Cr2TeO6 (#0.143) (s) P42/mnm Pn0nm (No. 58.395) (bp, �ap, cp; 0, 0, 0) m0mm
Cr2WO6 (#0.144) (s) P42/mnm Pn0nm (No. 58.395) (bp, �ap, cp; 0, 0, 0) m0mm
Co3TeO6 (#0.145) (t) C2/c C20/c (No. 15.87) (ap, bp, cp; 0, 0, 0) 20/m
EuZrO3 (#0.146) (u) Pnma Pnm0a (No. 62.444) (ap, bp, cp; 0, 0, 0) m0mm
LiFePO4 (#0.152) (v) Pnma P21/c0 (No. 14.78) (�bp, �cp, ap; 0, 0, 0) 2/m0

CaMnGe2O6 (#0.156) (w) C2/c C20/c (No. 15.87) (ap, bp, cp; 0, 0, 0) 20/m
TbCoO3 (#0.160) (x) Pbnm Pnm0a (No. 62.444) (�bp, cp, �ap; 0, 0, 0) m0mm
CoSe2O5 (#0.161) (y) Pbcn Pb0cn (No. 60.419) (ap, bp, cp; 0, 0, 0) m0mm
NdCrTiO5 (#0.162) (z) Pbam Pbam0 (No. 55.356) (ap, bp, cp; 0, 0, 0) m0mm
MnPS3 (#0.163) (aa) C2/m C20/m (No. 12.60) (ap, bp, cp; 0, 0, 0) 20/m

† References: (a) Troć et al. (2012), (b) Tan et al. (2005), (c) Scagnoli et al. (2012), (d) Shirane et al. (1959), (e) Will & Schafer (1979), ( f ) Redhammer et al. (2009), (g) Pomjakushin et al.
(2011), (h) Pomjakushin et al. (2011), (i) Zhu et al. (2014), (j) López et al. (2008), (k) Avdeev et al. (2013), (l) Jensen et al. (2009), (m) Ratcliff et al. (2009), (n) Rousse et al. (2003), (o)
Fiebig et al. (1996), (p) Melot et al. (2010), (q) Tsuzuki et al. (1974), (r) Schobinger-Papamantellos et al. (1988), (s) Kunnmann et al. (1968), (t) Ivanov et al. (2012), (u) Avdeev et al. (2014),
(v) Toft-Petersen et al. (2015), (w) Ding et al. (2016), (x) Knı́žek et al. (2014), (y) Rodriguez et al. (2016), (z) Buisson (1970), (aa) Ressouche et al. (2010). ‡ For the magnetic space
group, the transformation to its standard setting from the parent basis is indicated.

Figure 15
Single-k magnetic structures of AgCrO2 (Matsuda et al., 2012) and
SrNiIrO6 (Lefrançois et al., 2014) as examples of the two different
approaches when dealing with structures with propagation vectors and
symmetries that allow the presence of secondary modes in the form of
spin wave harmonics. In the first structure, the harmonic with propagation
vector 3k is necessarily present in the model to produce equality of all
spin moduli, while in the second one, a sinusoidal spin wave according to
the primary propagation vector is proposed and the symmetry-allowed 3k
(= 0) component is absent. In both cases, no experimental evidence of a
third harmonic seems to exist. Below each structure, the parent grey
space group, the MSG and the modulation wavevectors present in the
structure are indicated.



These spin arrangements do not fulfil the usual single-irrep

assumption and require significant nonzero amplitudes of

higher harmonics of the primary spin mode. Magnetic Bragg

peaks for odd multiples of the propagation vector should be

present in the diffraction diagram, but often these simplified

models are assumed without experimental evidence for higher

harmonics in the spin wave. The equality of the spin modulus

at all sites is generally considered physically more appealing

than the single-irrep assumption, which would imply a sinu-

soidal spin wave. However, one can find both types of

approach in the proposed models in the literature. Fig. 15

shows two examples.

6.14. Secondary modes with the primary propagation vector

From the approximately 30 structures with MSGs that allow

the presence of secondary modes with the same propagation

vector as the primary spin arrangement, there are only six

where the amplitude of these secondary degrees of freedom is

nonzero. The case of Er2Ru2O7 (#0.154; Taira et al., 2003) is an

interesting example. Its MSG is I41
0/am0d, i.e. it is one of the

maximal epikernels of the irrep mGM3+ (see x5 and Fig. 10).

Fig. 16 shows the reported structure of this compound

compared with that of Er2Ti2O7 (#0.29; Poole et al., 2007).

While the spin arrangement in Er2Ti2O7 has been modelled

assuming the presence of only the primary irrep mGM3+, and

therefore the symmetry-allowed secondary spin mode

according to irrep mGM2+ is absent, the spin ordering in

Er2Ru2O7 has been refined as a collinear arrangement. The

simplicity of this second model hides a rather exceptional

behaviour when seen in terms of irreps. The collinearity does

not imply an MSG different from that of Er2Ti2O7, but it

requires the presence of a spin mode according to the

secondary irrep mGM2+, and with a large specific amplitude

correlated with that of the primary active irrep. From the

original publication, it is not clear if this rather unusual weight

of a secondary irrep mode is the result of an a priori

collinearity assumption, or whether it was constrasted with a

pure mGM3+ model, being then fully supported by the

experimental data. The presence of secondary irrep modes of

this type in four of the six structures can be traced back to such

types of assumption or extrinsic conditions. This is the case for

Mn3GaC (#1.153; Fruchart et al., 1970), where collinearity also

forces the presence of a secondary irrep mode, U3Ru4Al12

(#0.12; Troć et al., 2012), where some specific relative spin

orientations not forced by symmetry are included in the

model, and Tb2Ti2O7 (#0.77; Sazonov et al., 2013), which is a

structure stabilized by an external magnetic field.

Therefore, only two structures in the whole collection

include a significant contribution of a secondary irrep mode

that was independently monitored and did not originate from

some assumption. These are the structures of Cr2S3 (#0.5;

Bertaut et al., 1968) and Nd3Ru4Al12 (#0.149; Gorbunov et al.,

2016). In both cases, the amplitudes of both primary and

secondary modes are comparable, and therefore it does not

seem appropriate to consider one of them as an induced

secondary effect. Despite the symmetry compatibility of one

of the modes with respect to the other, it seems that, in these

two cases, one should consider the two spin components as

ordering modes associated with two independent primary

order parameters.

6.15. Multi-k structures

Reported magnetic structures with more than one propa-

gation vector are scarce. Despite our efforts to find well

defined experimental structures in the literature with several

independent propagation vectors, the numbers of 2k and 3k

structures that we could collect were only 15 and eight,

respectively. These include structures with symmetry-related

propagation vectors. Only six 2k structures have a parent

symmetry relating the two active propagation vectors, while in

the case of the 3k structures, seven of the eight involve three

primary propagation vectors related by the parent symmetry,

either cubic or hexagonal. Fig. 17 shows some examples.
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Figure 16
Two magnetic structures complying with the same MSG I401=am0d. The
structure reported for Er2Ti2O7 (Poole et al., 2007) includes a single spin
mode with two-dimensional mGM3+ irrep basis functions specialized to
this MSG, while the collinear model of Er2Ru2O7 (Taira et al., 2003)
requires the additional presence of a secondary mGM2+ mode
compatible with the same MSG.

Figure 17
The magnetic structures of NdMg (Deldem et al., 1998), TmAgGe (Baran
et al., 2009) and NpBi (Burlet et al., 1992) as examples of multi-k
structures with symmetry-related propagation vectors. Below each figure,
the parent grey space group, the MSG of the phase and the active
independent propagation vectors with respect to the parent structure are
indicated.



It must be stressed that the magnetic symmetry of a

commensurate multi-k structure is also given by an MSG,

having from this viewpoint no essential difference from a

single-k structure. The number of independent propagation

vectors associated with the spin modulation comes from a

comparison with the parent paramagnetic structure, and it is

not an intrinsic property of the spin arrangement. The

magnetic structure is fully defined by its relevant MSG, its unit

cell, and the set of atomic positions and magnetic moments of

its asymmetric unit, without any reference to the underlying

propagation vectors with respect to the parent structure. For

instance, the magnetic structure of NpBi (#3.7; Burlet et al.,

1992) represented in Fig. 17 has a parent phase with space

group Fm3m. The magnetic ordering breaks all the centring

translations while keeping the cubic unit cell and results in the

MSG Pn3m0. This can be described by the condensation of

spin waves with the propagation vectors (1, 0, 0), (0, 1, 0) and

(0, 0, 1) on the reference paramagnetic face-centred cubic

structure. However, the same spin arrangement for the same

magnetic sites and with the same MSG can be realized in a

magnetic phase having a parent structure with a primitive

cubic lattice and space group Pn3m10. In such a case, the same

spin arrangement would be described as a single-k magnetic

structure with k = 0.

Multi-k structures with symmetry-related k vectors are in

general indistinguishable from single-k structures in powder

diffraction experiments. Even in the case of single-crystal

studies, the distinction between a multi-k and a single-k

structure with appropriate domain populations can be

problematic. Most of the collected multi-k structures with

symmetry-related k vectors correspond to single-crystal

studies, but not all [see, for instance, TmAgGe (#3.1; Baran et

al., 2009)]. It is generally believed that the diffraction diagrams

of single-k structures should change considerably under an

external magnetic field owing to changes in the domain

populations, while those of multi-k structures should be rather

insensitive. Under this assumption, the study of the variation

in a single-crystal diffraction diagram under a magnetic field

has become a traditional form of identifying multi-k spin

arrangements, and was used in the studies of some of the

structures collected here.

More than 50 single-k structures in this collection have a

propagation vector and a parent symmetry such that alter-

native multi-k models would be possible. In most cases, these

multi-k models have not been explored as possible alternative

models. Usually when confronted with this problem, the

single-k model is preferred a priori and it is the one reported.

One should be aware, however, that multi-k models could

equally well fit the experimental data in most such cases. If an

alternative multi-k model has also been reported, both have

been included in the collection, but this situation rarely

happens.

6.16. Multi-axial structures

Sometimes the so-called multi-axial structures, where the

spins orientate according to several different fixed directions,

are assimilated with the multi-k structures. However, multi-

axial spin arrangements are not exclusive to multi-k structures

and they can also be a symmetry-protected feature of single-k

structures. Fig. 18 shows some examples where multiple axes

for the spin orientations are symmetry dictated and a single

propagation vector exists with respect to the parent phase.

6.17. Conflicting models

MAGNDATA has more than one magnetic structure for

around 50 compounds. In most cases they correspond to

different magnetic phases or to the same phase under a

different temperature, field etc. In other cases they correspond

to a different model for the same phase reported by different

authors, and the structures are very similar. In a few cases they

represent several alternative indistinguishable models that

have been reported in the same reference. But in the case of 12

compounds, and for apparently the same phase, this collection

has gathered magnetic structures that differ by a significant

amount. They are summarized in Table 9.

In EuZrO3 (Avdeev et al., 2014; Saha et al., 2016), one finds

a typical case where the easy axis of a collinear arrangement

seems difficult to establish and two different studies report

different directions. But, depending on this direction, the

relevant MSG changes, and this dictates different magneto-

structural properties, like the allowance or not of linear

magnetoelectric (ME) effects. Through the direct link to the

program MAGNEXT, one can also see that the two models

imply different systematic absences in the diffraction diagram,

which could in principle help to differentiate between the two
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Figure 18
The magnetic structures of Mn3Cu0.5Ge0.5N (Iikubo et al., 2008),
Dy3Al5O12 (Hastings et al., 1965), NiS2 (Yano et al., 2016) and Ce3NIn
(Gäbler et al., 2008) as examples of multi-axial structures with a single
propagation vector. Below each figure, the label of the corresponding
MSG and the propagation vector are indicated.



models. There are also cases where the two models have the

same symmetry, and the difference is the presence or not of a

significant spin canting fully compatible with the MSG of the

structure. We have already mentioned the case of CoSe2O5

(Melot et al., 2010; Rodriguez et al., 2016), and something

similar happens for Sr2IrO4 (Lovesey et al., 2012; Ye et al.,

2013).

The cases of BiMn2O5 (Vecchini et al., 2008; Muñoz et al.,

2002), already discussed above, and LiFePO4 (Rousse et al.,

2003; Toft-Petersen et al., 2015) are representative of situa-

tions where the structural models differ only slightly, but this

difference breaks the symmetry further, therefore implying an

important qualitative difference. In one case it reduces the

MSG of the structure to the kernel of the irrep, and in the

other it implies the activity of a second primary irrep with a

very weak amplitude. A detailed comparison of the two

models of the magnetic structure of BiMn2O5 can be seen in

Table 10. One can observe that the deviations of the low-

symmetry model from one of higher symmetry are close to

their standard deviations, which would imply that the system

complies with one of the maximal epikernels of the active

irrep. However, apart from the larger magnetic moments of

the high-symmetry model, one can see that the spin canting

components along b for the Mn2 sites have opposite signs in

the two structures. It can also be noted that the model of

higher symmetry, apart from the moment relations consistent

with the indicated irrep epikernel, includes some additional

constraints that are not symmetry-forced. Its asymmetric unit

has three Mn sites, namely Mn1_1, and two independent sites

Mn2_1 and Mn2_2, which are the result of the splitting of the

single Mn2 site in the parent Pbam10 symmetry. The model

reported by Muñoz et al. (2002) includes some specific

correlation between the components of these two independent

sites and has the allowed z component of Mn1_1 fixed to zero,

but the structure has only a single irrep active and its

symmetry is maximal. Therefore, these additional constraints

are not justified by either the assumption of a specific irrep

spin mode or any other symmetry argument, and they could

have been skipped, even if they are fulfilled approximately.

This is an example of overconstraints in the structure model-

ling, an issue discussed below in more detail.

The remaining pairs of structures summarized in Table 9

correspond to models which differ in a higher degree: they

have no group–subgroup-related MSGs, different active irreps

etc. For instance, Fig. 19 shows the two very different magnetic

structures proposed for Cu3Mo2O9 (Vilminot et al., 2009; Hase

et al., 2015). The case of La0.333Ca0.667MnO3 (Radaelli et al.,

1999; Fernández-Dı́az et al., 1999) is also remarkable.

Although the spin arrangements of the two models are very

similar, their orientation relative to the parent structure is

completely different, both structures having distinct MSGs. A

small structural distortion of the parent structure is also
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Table 9
Conflicting structures for the same magnetic phase in MAGNDATA.

In the column headed ‘Experimental technique’, NPD denotes neutron powder diffraction and NSD denotes neutron single-crystal diffraction. In the column
headed ‘SA’, a cross (�) indicates that the systematic absences are different for the two proposed models.

Compound Entries Reference†

Parent
space
group

Magnetic
space
group Comparison

Experimental
technique SA

BiMn2O5 1.74 (a) Pbam Camc21 Same irrep NPD
1.75 (b) Cam Group–subgroup relation NSD

CaMnGe2O6 0.156 (c) C2/c C20/c One-irrep model NPD
0.155 (d) Ps1

0 Two-irrep model NPD
CoSe2O5 0.119 (e) Pbcn Pb’cn Same irrep NPD �

0.161 ( f ) With and without spin canting NSD
Cu3Mo2O9 0.129 (g) Pnma P21

021
021 Two irreps, one equal and the other different NPD �

0.130 (h) Pm0c21
0 NPD

EuZrO3 0.146 (i) Pnma Pnm0a Different easy axis NPD �

0.147 (j) Pn0m0a Different single irrep, ME effect allowed in one of the models NPD
Gd2CuO4 0.82 (k) Aeam Cm0ca0 Different parent symmetry NSD

0.104 (l) I4/mmm CAccm Inclusion or not of a structural distortion NSD
HoMnO3 0.33 (m) P63cm P63cm Different single irrep NPD

0.43 (n) P63
0cm0 NSD

LiFePO4 0.95 (o) Pnma Pnma0 One-irrep and two-irrep models; second irrep: small spin
canting that breaks the symmetry

NPD �

0.152 (p) P21/c0 Group–subgroup relation NSD
NiTa2O6 1.112 (q) P42/mnm Pc21/c Two irreps, one equal and the other different NPD

1.172 (r) Abba2 NPD
Sr2IrO4 1.3 (s) I41/acd PIcca Same irrep, same symmetry NPD �

1.77 (t) Without and with canting NSD
YMnO3 0.6 (u) P63cm P63cm One-irrep and two-irrep models NPD

0.44 (n) P63
0 No common irrep NSD

La0.333Ca0.667MnO3 1.174 (v) Pnma Pbmc21 Different parent structure, different orientation of the
propagation vector

NPD
1.175 (w) Pbmn21 NPD

† References: (a) Muñoz et al. (2002), (b) Vecchini et al. (2008), (c) Ding et al. (2016), (d) Redhammer et al. (2008), (e) Melot et al. (2010), ( f ) Rodriguez et al. (2016), (g) Vilminot et al.
(2009), (h) Hase et al. (2015), (i) Avdeev et al. (2014), (j) Saha et al. (2016), (k) Brown & Chatterji (2011), (l) Chattopadhyay et al. (1992), (m) Muñoz, Alonso et al. (2001), (n) Brown &
Chatterji (2006), (o) Rousse et al. (2003), (p) Toft-Petersen et al. (2015), (q) Law et al. (2014), (r) Ehrenberg et al. (1998), (s) Lovesey et al. (2012), (t) Ye et al. (2013), (u) Muñoz et al.
(2000), (v) Radaelli et al. (1999), (w) Fernández-Dı́az et al. (1999).



oriented differently in the two models. The tetragonal pseudo-

symmetry of the parent structure, and especially of the Mn

sites, seems to be the cause for these two very different models

being able to fit the diffraction data reasonably well. A model

very similar to the one reported by Radaelli et al. (1999) has

recently been reported for a compound with a similar

composition, La0.375Ca0.625MnO3 (#1.173; Martinelli et al.,

2016).

6.18. ‘Concomitant’ structural transitions

About 60% of the collected structures have a magnetic

ordering whose symmetry implies some symmetry break for

the non-magnetic degrees of freedom. In other words, the

MSG of the magnetic structure allows structural distortions

forbidden in the parent space group, which can in principle

become nonzero through magnetostructural coupling. These

include of course the spin-driven multiferroics discussed

above. In most cases, the structural distortions that are

consistent with the MSG and break the parent space group are

too weak to be detected. As they are so rare, if they are

detected such distortions are often erroneously considered as

a so-called concomitant or simultaneous structural phase

transition.

Table 11 summarizes the structures in the collection where

such types of concomitant structural distortions have been

reported. The effective space group relevant for the non-

magnetic degrees of freedom is given by the space group used

to label the MSG in the OG setting. Although this collection

employs the BNS notation for the MSG labels, a link in the

BNS label of the MSG of each entry allows the user to obtain

the corresponding OG label and extract from it the effective

space group that is relevant for the non-magnetic degrees of

freedom. Table 11 indicates this effective space group for the

18 listed structures. The structural distortions of all

compounds in Table 11 seem consistent with the corre-

sponding effective space group, except for YFe4Ge2 and

LuFe4Ge2 (Schobinger-Papamantellos et al., 2001, 2012). In

these two compounds, the reported simultaneous structural

symmetry break P42/mnm! Pnnm cannot be explained as an

induced effect of the reported spin arrangement, which

without the conjunction of the structural distortion would

have a higher MSG. Hence, these two compounds are the only

cases in the collection where a genuine simultaneous inde-

pendent structural phase transition takes place. One must be

aware, however, that spin arrangements alternative to those

reported could explain the symmetry break observed in these

compounds in the non-magnetic structural degrees of freedom

as an induced effect, and it seems they were not explored.

The symmetry-breaking structural distortions of the other

16 structures in Table 11 seem to comply with the expected

symmetry constraints resulting from the MSG associated with

the spin ordering. Some of them have been refined under the

corresponding effective space group and are therefore fully

consistent as an induced effect. In a couple of cases, the space

group employed in the refinement of the positional structure is

a supergroup of the effective space group, and therefore the

observed structural distortion is also consistent with the MSG,

but it was partially constrained by the assumed model. In some

other cases, the structural distortion is observed and reported,
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Table 10
Comparison of the magnetic structures #1.74 and #1.75, reported for BiMn2O5 by Muñoz et al. (2002) and Vecchini et al. (2008) at 1.5 and 10 K,
respectively.

The MSG for each structure and the corresponding asymmetric unit for the Mn atoms are listed. The basis (2ap, bp, 2cp; 0, 0, 0) with respect to the parent Pbam unit
cell is used for the description. Only approximate atomic positions are listed. In the case of the model with higher symmetry and smaller asymmetric unit, the spins
of symmetry-related atoms are also included for comparison. Structure #1.74 has been transformed to the domain-related equivalent with all spins switched.

BiMn2O5 (#1.75) BiMn2O5 (#1.74)

Pbam10 ! Cam (2ap, �cp, 2bp; 0, 0, 0) Pbam10 ! Camc21 (2cp, ap, 2bp; 1
8 ; 0; 0)

Label x y z Constraints† Mx My Mz |M| Constraints† Mx My Mz |M|

Mn1_1 0.00 0.50 0.37 mx, my, mz 2.10 (3) �0.33 (6) �0.25 (6) 2.14 mx, my, mz 2.44 (10) �0.6 (2) 0.0 2.51
Mn1_2 0.25 0.00 0.13 mx, my, mz 2.07 (3) 0.56 (6) 0.08 (6) 2.15 mx, �my, mz 2.44 0.6 0.0 2.51
Mn2_1 0.20 0.35 0.25 mx, my, 0 �2.83 (5) 0.33 (10) 0.0 2.85 mx, my, 0 �3.12 (9) �0.8 (2) 0.0 3.22
Mn2_3 0.05 0.85 0.25 mx, my, 0 �2.83 (5) �0.23 (10) 0.0 2.84 mx, �my, 0 �3.12 0.8 0.0 3.22
Mn2_2 0.30 0.65 0.25 mx, my, 0 2.80 (5) �0.34 (9) 0.0 2.82 �mx, �my, 0 3.12 0.8 0.0 3.22
Mn2_4 0.45 0.15 0.25 mx, my, 0 �2.74 (5) �0.64 (10) 0.0 2.81 mx, �my, 0 �3.12 0.8 0.0 3.22

† Symmetry constraints on the magnetic moment M.

Figure 19
Conflicting magnetic structures for the same phase of Cu3Mo2O9

(Vilminot et al., 2009; Hase et al., 2015), with indications of the MSGs
and the transformation to the standard setting of each group from the
parent Pnma basis.



but owing to its weakness it was not characterized and was not

included in the magnetic structure.

6.19. Overconstrained structures

The description of magnetic structures in MAGNDATA

using their MSG allows us to distinguish in the model, in a

straightforward form, the constraints that are forced and

protected by symmetry from those that are not. Constraints

that are not symmetry dictated are very common, and they

reduce the number of free parameters with respect to a

general model complying with the relevant MSG. There can be

good reasons for having a structure with fewer free parameters

than those allowed by the associated magnetic symmetry, and

some of them have already been discussed above. They can be

summarized in the following points:

(i) Collinearity favoured by exchange-type interactions can

prevail and strict collinearity can be assumed, despite the

MSG allowing non-collinear spin canting. See, for instance, the

case of ErAuGe (#1.33; Baran et al., 2001).

(ii) If the magnetic structure has a single active irrep but the

resulting MSG allows secondary magnetic irreps, the presence

of these additional degrees of freedom is usually negligible

and the model can be restricted to the primary irrep

(constrained along the direction dictated by the MSG). See,

for instance, the case of GdBiPt (#1.111; Müller et al., 2014).

(iii) If several irreps are active, the resulting MSG usually

has a very low symmetry. As a consequence, several additional

secondary irreps may be symmetry allowed, but they corre-

spond to very weak high-order effects. In such cases, the

restriction of the spin arrangement to the primary irreps

implies a substantial reduction in the effective number of

degrees of freedom. See, for instance, the case of CsNiCl3
(#1.0.4; Yelon & Cox, 1973).

In the traditional representation method, restrictions on the

possible combinations of basis spin modes corresponding to

the active irrep (or irreps) are usually introduced through a

mixture of ad hoc simplifications and/or intuitive assumptions

combined with trial and error methods. This implies that, in

general, the final model may include constraints that cannot be

justified on symmetry or physical grounds. Thus, in complex

structures the constraints corresponding to a particular irrep

epikernel, or the three types of physical restriction mentioned

above, are usually mixed up with others that can only be

considered convenient simplifications to reduce the number of

refinable parameters. An example has already been shown

above when discussing the structure of BiMn2O5 (Muñoz et al.,

2002), summarized in Table 10. This kind of simplification is so

common that it sometimes seems as if it is introduced auto-

matically without being necessitated by the limitations of the

experimental data.

One of the most common contraints not forced by

symmetry and present in many structures of this database is

the restriction of the modulus of the magnetic moment for the

same atomic species to have equal value at sites that are

symmetry independent in the paramagnetic phase. This ad hoc

assumption can often represent a reasonable simplification

and can be necessary owing to the lack of sufficient data for a

more complex model but, in general, independent sites can

have different magnetic moments and this collection also
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Table 11
Structures in MAGNDATA where a symmetry-breaking structural distortion is reported to be concomitant with the magnetic transition.

The column headed ‘Structural distortion’ indicates if the structural distortion is fully consistent as an induced effect (‘Present’), has been constrained a priori by
the refined model (‘Present partially’), is reported in another reference (‘Other reference’), is reported but not characterized (‘Reported but not characterized’), or
is inconsistent as an induced effect and must be considered an independent structural transition (‘Concomitant structural transition?’).

Entry Reference† k vector(s)
Parent space
group Magnetic space group

Effective space
group‡ Structural distortion

BaFe2As2 (#1.16) (a) (1
2 ;

1
2 ; 0) I4/mmm CAmca (No. 64.480) Fmmm Present

CaFe2As2 (#1.52) (b) (1
2 ;

1
2 ; 0) I4/mmm CAmca (No. 64.480) Fmmm Present

CoO (#1.69) (c) (1
2 ;

1
2 ;

1
2) Fm3m Cc2/c (No. 15.90) C2/m Present

�-Mn (#1.85) (d) (1, 0, 0) I43m PI421c (No. 114.282) I42m (No. 121) Present

GeV4S8 (#1.86) (e) (1
2 ;

1
2 ; 0) F43m Pana21 (No. 33.149) Pmn21 Present

AgCrS2 (#1.136) ( f ) (� 3
4 ;

3
4 ;�

3
4) R3m Ccm (No. 8.35) Cm Present

MnCuO2 (#1.57) (g) (� 1
2 ;

1
2 ;

1
2) C2/m Ps1 (No. 2.7) P1 Present

Sr2CoOsO6 (#1.72) (h) (1
2 ;

1
2 ; 0) I4/m Cc2/c (No. 15.90) C2/c Present

Ag2CrO2 (#1.0.1) (i) (1
5 ;

1
5 ; 0) (2

5 ;
2
5 ; 0) P3m1 C20/m (No. 12.60) C2/m Present partially

DyFe4Ge2 (#1.98) (j) (1
4 ;

1
4 ; 0) P42/mnm Pccc2 (No. 27.82) Pmm2 Present partially

NiF2 (#0.36) (k) (0, 0, 0) P42/mnm Pnn0m0 (No. 58.398) Pnnm Other reference

ErVO3 (#0.104) (l) (0, 0, 0) Pbnm P21
0/m0 (No. 11.54) P21/m Reported but not characterized

ErVO3 (#0.105) (m) (0, 0, 0) Pbnm P21/c (No. 14.75) P21/c Reported but not characterized

DyVO3 (#0.106) (m) (0, 0, 0) Pbnm P21
0/m0 (No. 11.54) P21/m Reported but not characterized

BaFe2Se3 (#1.120) (n) (1
2 ;

1
2 ;

1
2) Pnma Cac (No. 9.41) Pc Reported but not characterized

Mn3CuN (#2.5) (o) (1
2 ;

1
2 ; 0) (0,0,0) Pm3m P4/n (No. 85.59) P4/n Reported but not characterized

YFe4Ge2 (#0.27) (p) (0, 0, 0) P42/mnm Pn0n0m0 (No. 58.399) Pnnm Concomitant structural transition?

LuFe4Ge2 (#0.140) (q) (0, 0, 0) P42/mnm Pn0n0m0 (No. 58.399) Pnnm Concomitant structural transition?

† References of the magnetic structures: (a) Huang et al. (2008), (b) Goldman et al. (2008), (c) Jauch et al. (2001), (d) Lawson et al. (1994), (e) Müller et al. (2006), ( f ) Damay et al. (2011),
(g) Damay et al. (2009), (h) Yan et al. (2014), (i) Matsuda et al. (2012), (j) Schobinger-Papamantellos et al. (2006), (k) Brown & Forsyth (1981), (l) Chattopadhyay et al. (1992), (m)
Reehuis et al. (2011), (n) Caron et al. (2011), (o) Fruchart & Bertaut (1978), (p) Schobinger-Papamantellos et al. (2001), (q) Schobinger-Papamantellos et al. (2012). ‡ For non-magnetic
degrees of freedom.



includes many examples where they have been refined inde-

pendently.

A more subtle simplifying constraint is the assumption of

equal moment modulus at magnetic sites which are symmetry

independent in the magnetic phase but come from the splitting

of a single orbit in the paramagnetic phase. Traditionally, it has

been assumed that, if the propagation vector k is not

equivalent to �k, sites related by operations that transform k

into �k become symmetry split in the magnetic phase. This is

not correct in general, as these operations may be maintained

within the irrep epikernels. In such cases these sites are kept

symmetry related, and therefore the assumption of equal

moduli for their magnetic moments is one of the MSG

constraints of the phase. In other cases, however, the MSG

produces a genuine splitting of the atomic sites, and the

assumption of keeping correlated spins is not justified by

symmetry arguments. Most of the structures that have genuine

split magnetic sites include this simplifying constraint and

their spins are assumed to have equal modulus. Table 12 and

Fig. 20 summarize the magnetic structure of �-Mn (#1.85;

Lawson et al., 1994). This is one of the few examples in the

collection where this assumption was not introduced and the

refinement was done fully consistent with the active irrep and

relevant MSG, with split sites having independent magnetic

moment values.

7. Conclusions

We have gathered a digital collection of more than 400

published magnetic structures under the name MAGNDATA,

where magnetic symmetry is applied as a robust unambiguous

common framework for their description, and a preliminary

version is used of the so-called magCIF format, which extends

the CIF format to magnetic structures. No validation check

has been applied to the structures, and inclusion in the

collection has only been subject to the requirement that the

published model is self-consistent and unambiguous. The

collection is freely available at the Bilbao Crystallographic

Server (http://www.cryst.ehu.es) and is intended to be a

benchmark for a future complete database. This article

presents and explains the information that can be retrieved for

any of the more than 370 collected commensurate magnetic

structures. The various tools that are available for visualiza-

tion and analysis of each entry have been explained using

multiple examples. We have also included a detailed survey of

the properties of the collected structures, which shows the

power and efficiency of the employed symmetry classification.

A subsequent article (Gallego et al., 2016) deals with the more

than 40 incommensurate structures that are also included in

this collection, using magnetic superspace symmetry as the

framework for their description.

We do not have the means to extend MAGNDATA to

cover all magnetic structures published in the past, or to

maintain it and update it regularly for all those published in

the future, and therefore this collection does not pretend to

become the necessary complete database of all published

magnetic structures. However, we hope that this work will

stimulate further efforts within the community in the direction

of the standardization and unambiguous communication of

magnetic structures, with the aim of making such a database

possible in the foreseeable future. Meanwhile, authors who

have reported a magnetic structure that is absent from this

collection and who are interested in having it included are

invited to contact us through the given email address.
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Table 12
The asymmetric unit of the magnetic structure of �-Mn (#1.85; Lawson et al., 1994) as an example of a structure determined including only constraints
forced by the MSG with split sites refined independently.

The approximate relations of the magnetic moments at different sites, if fulfilled exactly, cannot be justified by any increase in the symmetry or any additional irrep
restriction, as the symmetry is maximal and only one irrep is active.

�-Mn (#1.85), I43m10 !PI421c (bp, ap, �cp; 0, 0, 0)

Label x y z Constraints† Mx My Mz |M|

Mn1 0.00000 0.00000 0.00000 0, 0, mz 0.0 0.0 2.83 (13) 2.83
Mn2 0.3192 (2) 0.3192 0.3173 (3) mx, mx, mz 0.14 (12) 0.14 1.82 (6) 1.83
Mn3_1 0.3621 (1) 0.3621 0.0408 (2) mx, mx, mz 0.43 (8) 0.43 0.43 (8) 0.74
Mn3_2 0.3533 (2) 0.0333 (1) 0.3559 (2) mx, my, mz �0.25 (10) �0.25 (10) �0.32 (4) 0.48
Mn4_1 0.0921 (2) 0.0921 0.2790 (3) mx, mx, mz 0.27 (8) 0.27 �0.45 (8) 0.59
Mn4_2 0.0895 (2) 0.2850 (1) 0.0894 (2) mx, my, mz �0.08 (4) �0.45 (8) 0.48 (5) 0.66

† Symmetry constraints on M.

Figure 20
The magnetic structure of �-Mn (#1.85; Lawson et al., 1994), one of the
few structures in MAGNDATA with a considerable number of
independent magnetic sites (some of them symmetry-split by the
magnetic order) and which does not include simplifying constraints.



Finally, it should be stressed again that the description of

many of the structures within a common framework, with full

application of their symmetry properties, has in many cases

required a complete transformation and reinterpretation of

the information provided by the original references. This may

have led to errors and misinterpretations. We therefore

welcome and will greatly appreciate any report that may point

out such problems.
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