

Mathematics and Computer Science for Materials Innovation: Crystal Lattice Classifications

05.09 - 09.09 2022 Liverpool

gemma.delaflor@kit.edu

Comparison of structures by the Bilbao Crystallographic Server

Content

Crystal-structure descriptions

- Transformations between different crystal-structure descriptions
- Transformations to a lower symmetry space group
- Symmetrically equivalent descriptions

Comparison between different structure descriptions

- Comparison of structures with the same/different composition
- Comparison of chiral structures

Crystal structure description

- What type of information is necessary to describe a crystal structure?
 - Space Group
 - Lattice parameters
 - The number of independent atoms in the asymmetric unit
 - The atom type and the coordinates

141						
6.6164 6.6164 6.0150 90 90 90						
3						
Zr 1 4a	0.000 0.750 0.125					
Si 1 4b	0.000 0.750 0.625					
O 1 16ł	n 0.000 0.067 0.198					

BCS format

Standard setting

The settings of space groups hat coincide with the conventional spacegroup descriptions found in *Volume A of International Tables for Crystallography*. For space groups with more than one description, the following settings are chosen as standard:

- Unique axis b and cell choice 1 for monoclinic space groups
- *Hexagonal axes* for rhombohedral space groups
- Origin choice 2 (origin at 1) for centrosymmetric space groups listed with two origin choices

What can I do if my structures are described in a nonstandard setting?

Initial Setting: I12/a (No. 15) 15 5.5017 5.0270 7.2619 90 92.814 90 3 Mn 1 4d 0.250000 0.250000 0.250000 F 1 8f 0.072200 -0.038000 0.305700 F 2 4e 0.250000 0.136000 0.000000 (P, p)Final Setting: C12/c1 (No. 15) -a - c, b, a

- 1) Transform the unit cell parameters
- 2) Transform of the atomic coordinates

1) Transform the unit cell parameters

Calculate the metric tensor G

Initial Setting: I12/a (No. 15)							
а	b	С	α	β	γ		
5.5017	5.0270	7.2619	90	92.814	90		

 $\boldsymbol{G} = \begin{pmatrix} a^2 & ab \cos\gamma & ac \cos\beta \\ ab \cos\gamma & b^2 & bc \cos\alpha \\ ac \cos\beta & bc \cos\alpha & c^2 \end{pmatrix} \implies \boldsymbol{G} = \begin{pmatrix} 30.268703 & 0 & -1.961435 \\ 0 & 25.270726 & 0 \\ -1.961435 & 0 & 52.735192 \end{pmatrix}$

1) Transform the unit cell parameters

Transform the unit cell parameters to the standard setting

	Initia	I Sett	ing: <i>I</i> 12	2/a ((No. 15)	
а	!	b	С	α	β	γ
5.50)17 5.	0270	7.2619	90	92.814	90
G ′	$= P^T \cdot$	G · P	$=\begin{pmatrix} \overline{1}\\ 0\\ 1 \end{pmatrix}$	0 1 0	$\begin{bmatrix} \overline{1} \\ 0 \\ 0 \end{bmatrix} \begin{pmatrix} 30 \\ -1 \end{bmatrix}$.2687 0 961
(79.081024 0 –28.307267) Final Setting: C12/c1 (No. 15)						
G ′ =	=(2	0 8.307	2: 267	5.27 0	0726	30.26
			_ • •	Ū		(

7

Transform of the atomic coordinates $x' = P^{-1}x$ 2)

Mn 1 4d 0.250000 0.250000 0.250000 1 8f 0.072200 -0.038000 0.305700 F F 2 4e 0.250000 0.136000 0.000000

Mn
$$x' = \begin{pmatrix} 0 & 0 & \overline{1} \\ 0 & 1 & 0 \\ 1 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} 0.25 \\ 0.25 \\ 0.25 \end{pmatrix} = \begin{pmatrix} -0.25 \\ 0.25 \\ 0 \end{pmatrix}$$

Final Setting: *C*12/*c*1 (No. 15)

F1
$$x' = \begin{pmatrix} 0 & 0 & \bar{1} \\ 0 & 1 & 0 \\ 1 & 0 & \bar{1} \end{pmatrix} \begin{pmatrix} 0.0722 \\ -0.038 \\ 0.3057 \end{pmatrix} = \begin{pmatrix} -0.3057 \\ -0.038 \\ -0.2335 \end{pmatrix}$$
 Mn 1
F 1
F 2 -0.250000 0.250000 0.000000
-0.305700 -0.038000 -0.233500
0.000000 0.136000 0.250000

$$\boldsymbol{P} = \begin{pmatrix} \bar{1} & 0 & 1 \\ 0 & 1 & 0 \\ \bar{1} & 0 & 0 \end{pmatrix} \Longrightarrow \boldsymbol{P^{-1}} = \begin{pmatrix} 0 & 0 & \bar{1} \\ 0 & 1 & 0 \\ 1 & 0 & \bar{1} \end{pmatrix}$$

F2 $x' = \begin{pmatrix} 0 & 0 & \overline{1} \\ 0 & 1 & 0 \\ 1 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} 0.25 \\ 0.136 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0.136 \\ 0.25 \end{pmatrix}$

Wyckoff Positions of Group C2/c (No. 15) [unique axis b]

Multiplicity	Wyckoff	Site	Coordinates		
	letter	symmetry	(0,0,0) + (1/2,1/2,0) +		
8	f	1	(x,y,z) (-x,y,-z+1/2) (-x,-y,-z) (x,-y,z+1/2)		
4	е	2	(0,y,1/4) (0,-y,3/4)		
4	d	-1	(1/4,1/4,1/2) (3/4,1/4,0)		
4	С	-1	(1/4,1/4,0) (3/4,1/4,1/2)		
4	b	-1	(0,1/2,0) (0,1/2,1/2)		
4	а	-1	(0,0,0) (0,0,1/2)		

Mn	1	4d	-0.250000	0.250000	0.000000
F	1	8f	-0.305700	0.038000	-0.233500
F	2	4e	0.000000	0.136000	0.250000

Initial Setting: *I*12/*a* (No. 15)

15							
5.5017 5.0270 7.2619 90 92.814 90							
3							
Mn	1	4d	0.250000	0.250000	0.250000		
F	1	8f	0.072200	-0.038000	0.305700		
F	2	4e	0.250000	0.136000	0.000000		

Final Setting:	<i>C</i> 12/ <i>c</i> 1	(No. 1	15)
-----------------------	-------------------------	--------	-----

15							
8.8928 5.0270 5.5017 90 125.35 90							
3							
Mn	1	4d	-0.250000	0.250000	0.000000		
F	1	8f	-0.305700	0.038000	-0.233500		
F	2	4e	0.000000	0.136000	0.250000		

Crystal-structure descriptions

Transformation between different structure descriptions

Structure Utilities				
CELLTRAN	Transform Unit Cells			
STRAIN	Strain Tensor Calculation			
WPASSIGN	Assignment of Wyckoff Positions			
TRANSTRU	Transform structures.			
SETSTRU	Alternative Settings for a given Crystal Structure			
EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure			
CIF2STANDARD	Transforms a given CIF (in any setting) to that of standard setting			
STRCONVERT	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available)			
VISUALIZE	Visualize structures using Jmol			
COMPSTRU	Comparison of Crystal Structures with the same Symmetry			
STRUCTURE RELATIONS	Evaluation of structure relationships [transformation matrix] between group-subgroup related phases			
PSEUDOLATTICE	Pseudosymmetry of a lattice and compatible supergroups			

ITA setting structure description

SETSTRU <u>https://www.cryst.ehu.es/cryst/setstru.html</u>

Transform a structure to an alternative setting

Transform to an alternative setting	Structure Data	Browse No file selected.					
The program SETSTRU performs the transformations between crystal-structure descriptions referred to the so- called ITA setting of space groups.	(15 5.501 3	7 5.0270) 7.2619 9	90 92.814 90		
The first step consists in the input of the structure data. The data can be given using the form or it can be loaded from a CIF file. The necessary data for the structure consists in the number of its space group in the <i>International Tables for Crystallography</i> , Vol A, the lattice parameters (in A and degrees), the number of the atoms in the asymmetric unit and the corresponding atomic positions.	Structure	Mn F F	1 1 2	4d 8f 4e	0.250000 0.072200 0.250000	0.250000 -0.038000 0.136000	0.250000 0.305700 0.000000
Next, it is necessary to specify the initial and final settings of the structure descriptions among the listed ITA-settings of the structure's space group (e.g. to convert from rhombohedral to the standard hexagonal settings).						BC	CS format
A detailed description of the structure with respect to the final setting of the space group is shown in the output.					Transform Charles		

Transform Structure

To transform a structure described in a ITA-setting into another ITA-setting

ITA setting structure description

Choose the initial and final space groups symbols

The standard setting (default) of the space group 15 is C12/c1 [cell choice 1]

Initial	Final	Setting	Р	P-1
0	۲	C 1 2/c 1 [cell choice 1]	a,b,c	a,b,c
0	0	A 1 2/a 1 [cell choice 1]	c,-b,a	c,-b,a
0	0	A 1 2/n 1 [cell choice 2]	-a-c,b,a	c,b,-a-c
0	0	C 1 2/n 1 [cell choice 2]	a,-b,-a-c	a,-b,-a-c
۲	0	l 1 2/a 1 [cell choice 3]	c,b,-a-c	-a-c,b,a
0	0	I 1 2/c 1 [cell choice 3]	-a-c,-b,c	-a-c,-b,c
0	0	A 1 1 2/a [cell choice 1]	c,a,b	b,c,a
0	0	B 1 1 2/b [cell choice 1]	a,c,-b	a,-c,b
0	0	B 1 1 2/n [cell choice 2]	a,-a-c,b	a,c,-a-b
0	0	A 1 1 2/n [cell choice 2]	-a-c,a,-b	b,-c,-a-b
0	0	I 1 1 2/b [cell choice 3]	-a-c,c,b	-a-b,c,b
0	0	l 1 1 2/a [cell choice 3]	c,-a-c,-b	-a-b,-c,a
0	0	B 2/b 1 1 [cell choice 1]	b,c,a	c,a,b
0	0	C 2/c 1 1 [cell choice 1]	-b,a,c	b,-a,c
0	0	C 2/n 1 1 [cell choice 2]	b,a,-a-c	b,a,-b-c
0	0	B 2/n 1 1 [cell choice 2]	-b,-a-c,a	c,-a,-b-c
0	0	/ 2/c 1 1 [cell choice 3]	b,-a-c,c	-b-c,a,c
0	0	I 2/b 1 1 [cell choice 3]	-b,c,-a-c	-b-c,-a,b

Initial Setting: *I*12/*a* (No. 15)

15						
5.5017 5.0270 7.2619 90 92.814 90						
3						
Mn	1	4d	0.250000	0.250000	0.250000	
F	1	8f	0.072200	-0.038000	0.305700	
F	2	4e	0.250000	0.136000	0.000000	

Final Setting: C12/c1 (No. 15)

ITA setting structure description

Transformation to standard setting of space group 15

Initial structure

Initial Setting: /12/a1 [cell choice 3] (No. 15)

15						
5.5017	5.0270	7.2619	90	92.814 90		
3						
Mn	1	-		0.250000	0.250000	0.250000
F	1	-		0.072200	-0.038000	0.305700
F	2	-		0.250000	0.136000	0.000000

Final structure

Final S	etting:	C12/c1 [cell choice 1] (N	o. 15)	
15 8.8928 3	5.0270	5.5017	90.00 125.35 90	.00	
Mn F	1 1	4d 8f	-0.250000 -0.305700	0.250000 -0.038000	0.000000 -0.233500
E CIF File		4e	0.000000	0.136000	0.250000

Transformation matrix (P, p): -a-c,b,a; 0,0,0

Matrix form:

			[-1	0	1]	[0]
(P,	p)	=	[0	1	0]	[0]
			[-1	0	0]	[0]

Atoms Data:

The data shown in this table corresponds to the final setting which corresponds to the standard setting

AT.	WP	SS	Representative	Atomic orbit
Mn1	4d (1/4,1/4,1/2)	-1	(0.750000,0.250000,0.000000)	(0.750000,0.250000,0.000000) (0.250000,0.250000,0.500000) (0.250000,0.750000,0.000000) (0.750000,0.750000,0.500000)
F1	8f (x,y,z)	1	(0.694300,0.962000,0.766500)	(0.694300,0.962000,0.766500) (0.305700,0.962000,0.733500) (0.305700,0.038000,0.233500) (0.694300,0.038000,0.266500) (0.194300,0.462000,0.766500) (0.805700,0.462000,0.733500) (0.805700,0.538000,0.233500) (0.194300,0.538000,0.266500)
F2	4e (0,y,1/4)	2	(0.00000,0.136000,0.250000)	(0.000000,0.136000,0.250000) (0.000000,0.864000,0.750000) (0.500000,0.636000,0.250000) (0.500000,0.364000,0.750000)

This data is only calculated by the program if the final setting corresponds to the standard

Institute of Applied Geoscience Division Technical Petrophysics

Example – Scheelite

Scheelite (CaWO₄) is a mineral that crystallizes in the space group $I4_1/a$ (No. 88). In the *Inorganic Crystal Structure Database* the following two descriptions of CaWO₄ can be found:

# (a) Origin choice 1	# (b) Origin choice 2					
# ICSD: 15869	# ICSD: 15586					
88	88					
5.243 5.243 11.376 90 90 90	5.243 5.243 11.376 90 90 90					
3	3					
Ca 1 4b 0.0000 0.0000 0.5000	Ca 1 4b 0.0000 0.2500 0.6250					
W 1 4 <i>a</i> 0.0000 0.0000 0.0000	W 1 4 <i>a</i> 0.0000 0.2500 0.1250					
O 1 16 <i>f</i> 0.2413 0.1511 0.0861	O 1 16 <i>f</i> 0.1504 0.0085 0.2111					

Compare the two structure descriptions

Hint: In order to compare the different data, the parameters of Structure (a) are to be transformed to 'origin at center 2/m', *i.e.* ORIGIN CHOICE 2

Example – Scheelite

Structure 1 – origin 1 88 5.243 5.243 11.376 90 90 90 3 Ca 1 4b0.0000 0.0000 0.5000 W 1 4*a* 0.0000 0.0000 0.0000 O 1 16 f 0.2413 0.1511 0.0861 **SETSTRU #** Structure 1 – origin 2 88 5.2430 5.2430 11.3760 90 90 90 3 Ca 1 4b 0.0000 -0.2500 0.375000 W 1 4a 0.0000 -0.2500 -0.125000 O 1 16f 0.2413 -0.0989 -0.038900 **# Structure 2 – origin 2** 88 5.243 5.243 11.376 90 90 90 3 Ca 1 4*b* 0.0000 0.2500 0.6250 W 1 4a 0.0000 0.2500 0.1250 O 1 16 f 0.1504 0.0085 0.2111

AT.	WP	SS	Representative	Atomic orbit
Ca1	4b (0,1/4,5/8)	-4	(0.000000,0.750000,0.375000)	(0.000000,0.750000,0.375000) (0.500000,0.250000,0.875000) (0.000000,0.250000,0.625000) (0.500000,0.750000,0.125000)
W1	4a (0,1/4,1/8)	-4	(0.00000,0.750000,0.875000)	(0.000000,0.750000,0.875000) (0.500000,0.250000,0.375000) (0.000000,0.250000,0.125000) (0.500000,0.750000,0.625000)
01	16f (x,y,z)	1	(0.241300,0.901100,0.961100)	(0.241300,0.901100,0.961100) (0.258700,0.098900,0.461100) (0.848900,0.491300,0.211100) (0.651100,0.508700,0.711100) (0.758700,0.098900,0.038900) (0.741300,0.901100,0.538900) (0.151100,0.508700,0.788900) (0.348900,0.491300,0.288900) (0.741300,0.401100,0.461100) (0.758700,0.598900,0.961100) (0.348900,0.991300,0.711100) (0.151100,0.008700,0.211100) (0.258700,0.598900,0.538900) (0.241300,0.401100,0.038900) (0.651100,0.008700,0.288900) (0.848900,0.991300,0.788900)

Structure transformation

TRANSTRU <u>https://www.cryst.ehu.es/cryst/transtru.html</u>

Transform Structure Transform Structure Structure Data Examinar... No se ha seleccionado ningún archivo. **CIF** file [in CIF format] HINT: [The option for a given filename is preferential] TRANSTRU can transform a structure in two ways: # Space Group ITA number 221 To a lower symmetry space group. The # Lattice parameters transformed structure is given in the low 5.0 5.0 5.0 90 90 90 symmetry space group basis, taking care of all # Number of independent atoms in the asymmetric unit possible splittings of the Wyckoff positions. 3 # [atom type] [number] [WP] [x] [y] [z] · With an arbitrary matrix. The structure, High 1 1a 0.0 0.0 0 including the cell parameters and the atoms in Symmetry Ti 2 1b 0.5 0.5 0.5 the unit cell, is transformed with an arbitrary Structure 3 3c 0.5 0.0 0.5 matrix introduced by the user. Only the default choice for the conventional setting **BCS** format of the space groups is used. Transform structure to a subgroup basis Transform structure with an arbitrary matrix O Show

To transform a structure described in standard setting to a lower symmetry space group or with an arbitrary matrix

Institute of Applied Geoscience Division Technical Petrophysics

Structure transformation – arbitrary matrix

Transform Structure

Transform Structure

TRANSTRU transforms the structure, including the cell parameters and the atoms in the unit cell, with an arbitrary matrix introduced by the user.

Structure transformation

TRANSTRU <u>https://www.cryst.ehu.es/cryst/transtru.html</u>

Transform Structure Transform Structure Structure Data Examinar... No se ha seleccionado ningún archivo. **CIF** file [in CIF format] HINT: [The option for a given filename is preferential] TRANSTRU can transform a structure in two ways: # Space Group ITA number 221 . To a lower symmetry space group. The # Lattice parameters transformed structure is given in the low 5.0 5.0 5.0 90 90 90 symmetry space group basis, taking care of all # Number of independent atoms in the asymmetric unit possible splittings of the Wyckoff positions. 3 # [atom type] [number] [WP] [x] [y] [z] · With an arbitrary matrix. The structure, High 1 1a 0.0 0.0 0 including the cell parameters and the atoms in Symmetry Ti 2 1b 0.5 0.5 0.5 the unit cell, is transformed with an arbitrary Structure 3 3c 0.5 0.0 0.5 matrix introduced by the user. Only the default choice for the conventional setting **BCS** format of the space groups is used. Transform structure to a subgroup basis Transform structure with an arbitrary matrix O Show

To transform a structure described in standard setting to a lower symmetry space group or with an arbitrary matrix

Institute of Applied Geoscience Division Technical Petrophysics

Structure transformation – lower symmetry

Transform Structure

Transform Structure

TRANSTRU transforms the structure to the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.

	221	0 90 90 90			
	3 Ba 1 Ti 2 O 3	1a 1b 3c	0.00000 0.500000 0.500000	0.000000 0.500000 0.000000	0.000000 0.500000 0.500000
Structure					
					Input structure
Low symmetry Space Group ITA number	123				
Transformation Matrix:					
In matrix form:		0 1 0	Linear part 0 1 0 0 0 1 0 0		Origin Shift 0 0 0
			Show		Transformation matrix (P , p)

Output – TRANSTRU

Transformation matrix: b,c,a

High symmetry structure

221						
5.0	5.0	5.0 9	90 90 90			
3						
Ba		1	1a	0.000000	0.000000	0.00000
Ti		2	1b	0.500000	0.500000	0.500000
0		3	3c	0.500000	0.00000	0.500000

Visualize this structure CIF File

Space Group: 123

1a

1d

2e 0

3_2 1c

Detailed information

#

AT

Ba 1

Ti 2

0 3

0

Cartesian Coordinates

Low symmetry structure

Visualize this structure CIF File Cartesian Coordinates

Lattice Parameters: 5 5 5 90 90 90

WP Coordinates

1/2 1/2 1/2

1/2 1/2 0

1/2 1/2

0 0 0

Atoms Data:

AT.	WP	SS	Representative	Atomic orbit
Ba1	1a (0,0,0)	4/mmm	(0.000000,0.000000,0.000000)	(0.000000,0.000000,0.000000)
Ti2	1d (1/2,1/2,1/2)	4/mmm	(0.500000,0.500000,0.500000)	(0.500000,0.500000,0.500000)
03	2e (0,1/2,1/2)	mmm .	(0.000000,0.500000,0.500000)	(0.000000,0.500000,0.500000) (0.500000,0.000000,0.500000)
03_2	1c (1/2,1/2,0)	4/mmm	(0.500000,0.500000,0.000000)	(0.500000,0.500000,0.000000)

Note: The data shown in this table are correct if the input structure is referred to standard setting.

Institute of Applied Geoscience **Division Technical Petrophysics**

20

Structure transformation – CIF2Standard

CIF2Standard https://www.cryst.ehu.es/cryst/cif2standard.html

Transform a given structure (in CIF format) to its description in the standard setting

CIF to Standard

CIF to Standard

CIF2Standard transforms a given structure (in CIF format) to its description in the standard setting of its space group. Its original setting is determined by analyzing its symmetry operators listed in the input CIF file.

The default choice of the conventional setting of the space groups is used.

This tool uses a combination of the IDENTIFY GROUP, TRANSTRU and STRCONVERT tools of the Bilbao Crystallographic Server, but optionally STRUCTURE TIDY of the PLATON package (after Parthe & Gelato) can also be used by checking the corresponding option in the form. Structure Data [in CIF format] Browse... No file selected. Do the conversion via STRUCTURE TIDY implementation of the PLATON package Convert to default/standard setting

Structure transformation – CIF2Standard

CIF to Standard Setting

The submitted structure's space group number is identified through the symmetry operators as: #15.

It has been transformed to the standard setting C2/c via the transformation matrix: a+c+1/4,b+1/4,c+1/4

15	F 0004	7 0/11	~~ ~~ ~~ ~~ ~~ ~~			
3	5.0084	/.2411	90.00 38.29 90.00			Transform structure
Mn	1	4a	0.00000	0.00000	0.00000	(standard setting)
F	1	8f	0.678050	0.209720	-0.735150	
F	2	4e	0.00000	-0.117620	-0.250000	

CIF file of the structure in standard setting: cif2std_13517.cif

Download CIF file (standard setting)

Equivalent crystal structure descriptions

There are almost always several possible ways to describe the exactly same crystal structure

Space group $Pm\overline{3}m$ (No. 221)

How many equivalent descriptions of the structure CsCl exist?

Equivalent crystal structure descriptions

- For all space groups, except Im3m (No. 229) and Ia3d (No. 230), one can choose several different sets of atomic coordinates describing the same structure in the same space-group setting.
 - The number of equivalent descriptions can be calculated:

$$[i] = \frac{|N_{\varepsilon}(G)|}{|G|}$$

 $N_{\varepsilon}(G)$ represents the Euclidean normalizer of the space group G

By definition, *i* cosets result in the coset decomposition of $N_{\varepsilon}(G)$ with respect to *G*. The cosets generate the different equivalent descriptions of a given structure

Example – CsCl

• CsCl crystallizes in space group $Pm\overline{3}m$ (No. 221)

Euclidean normalizer (general metric) of the Group Pm-3m (No. 221)

Euclidean normalizer of Pm-3m (a,b,c): Im-3m (a,b,c)

Index of *Pm*-3*m* in *Im*-3*m* (**a**,**b**,**c**): 2 with i_L=2 and i_P=1

Additional generators of Im-3m (a,b,c) with respect to Pm-3m

x+1/2,y+1/2,z+1/2	(1 0 0	0 1 0	0 0 1	$\binom{1/2}{1/2}{1/2}$		t (1/2,1/2,1/2)
-------------------	---	-------------	-------------	-------------	-------------------------	--	-----------------

The cosets representatives of the Euclidean normalizer Im-3m (a,b,c) with respect to Pm-3m

• As $[i] = 2 \Rightarrow$ there are two possible sets of coordinates

• One set of cordinates is obtained from the other one according to the additional generators of $N_{\varepsilon}(G)$

Dr. Gemma de la Flor Martin – Bilbao Crystallographic Server 26 05.09.2022

Example – CsCl

CsCl crystallizes in space group $Pm\overline{3}m$ (No. 221)

Equivalent crystal structure descriptions

EQUIVSTRU https://www.cryst.ehu.es/cryst/equivstru.html

Institute of Applied Geoscience Division Technical Petrophysics

EQUIVSTRU – Output

• Equivalent description 1 (original input structure)

Normalizer coset representative: x,y,z

AT.	WP	SS	Representative	Atomic orbit
CI1	1a (0,0,0)	m-3m	(0.000000,0.000000,0.000000)	(0.000000,0.000000,0.000000)
Cs1	1b (1/2,1/2,1/2)	m-3m	(0.500000,0.500000,0.500000)	(0.500000,0.500000,0.500000)

• Equivalent description 2

Normalizer coset representative: x+1/2,y+1/2,z+1/2

AT.	WP	SS	Representative	Atomic orbit
CI1	1b (1/2,1/2,1/2)	m-3m	(0.500000,0.500000,0.500000)	(0.500000,0.500000,0.500000)
Cs1	1a (0,0,0)	m-3m	(0.000000,0.000000,0.000000)	(0.000000,0.000000,0.000000)

Example – similarity

Evaluate the similarity between these two structures. Try to find analogous coordinate descriptions.


```
#ICSD: 59413
                                                  #ICSD: 33788
148
                                                  148
7.348 7.348 7.274 90. 90. 120.
                                                  7.4279 7.4279 7.418 90. 90. 120.
3
                                                  3
K 1 3b 0.333333 0.666670 0.166670
                                                  Ba 1
                                                         3a 0.000000 0.000000 0.000000
As 1 3a 0.000000 0.000000 0.000000
                                                        3b 0.000000 0.000000 0.500000
                                                  Sn 1
F 1 18f 0.129200 0.216500 0.138100
                                                  F 1 18f 0.258600 0.826200 0.004700
```

 $R\overline{3}$ (No. 148) \Rightarrow 4 equivalent descriptions: x, y, z; x, y, z + 1/2; y, x, -z; y, x, -z + 1/2

Example – similarity

#ICSD: 59413 148 7.348 7.348 7.274 90. 90. 120. 3 K 1 3b 0.333333 0.6666670 0.166670 As 1 3a 0.000000 0.000000 F 1 18f 0.129200 0.216500 0.138100

BaSnF₆

#ICSD: 33788 148 7.4279 7.4279 7.418 90. 90. 120. 3 Ba 1 3a 0.000000 0.000000 0.000000 Sn 1 3b 0.000000 0.000000 0.500000 F 1 18f 0.258600 0.826200 0.004700

148 7.4279 7.4279 7.4180 90.00 90.00 120.00 3 Ba 1 3b 0.333333 0.6666667 0.166667 Sn 1 3a 0.000000 0.000000 0.000000 F 1 18f 0.159533 0.234267 0.161967

Comparison of structures

- Comparison of crystal structures is convenient to:
 - cross-check different experimental and/or theoretical structural models of the same phase coming from different sources
 - identify different phases with the same symmetry
 - classify structures into structure types
- The existence of various equivalent structure descriptions makes the comparison of different structural models a non-trivial task in general.

Are these two structures of Cs Cl similar?

Yes

Similarity between two crystal structures

#Structure 1

#Structure 2

15					
13.800	5.691	9.420 90	.0 102.3 90.0		
7					
Pb	1	4e	0.000000	0.291000	0.250000
Pb	2	8f	0.317000	0.309000	0.352000
P	1	8f	0.599000	0.241000	0.447000
0	1	8f	0.643000	0.030000	0.392000
0	2	8f	0.634000	0.464000	0.374000
0	3	8f	0.642000	0.280000	0.612000
0	4	8f	0.491000	0.222000	0.420000

1	5						
1	3.967	5.560	40.778	90.0 166.713	90.0		
- 7							
P	b	1	4e	0.000000		0.000000	0.750000
P	b	2	8f	0.000000		0.000000	0.856300
Ρ		1	8f	0.000000		0.000000	0.951100
0		1	8f	0.000000		0.000000	0.914500
0		2	8f	0.271500		0.728500	0.888500
0		3	8f	0.957000		0.500000	0.117000
0		4	8f	0 728500		0 271500	0 611500

Are these two structures similar?

Institute of Applied Geoscience Division Technical Petrophysics

Crystal Structure Relationships

	Structure Utilities
CELLTRAN	Transform Unit Cells
STRAIN	Strain Tensor Calculation
WPASSIGN	Assignment of Wyckoff Positions
TRANSTRU	Transform structures.
SETSTRU	Alternative Settings for a given Crystal Structure
EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure
CIF2STANDARD	Transforms a given CIF (in any setting) to that of standard setting
STRCONVERT	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available)
VISUALIZE	Visualize structures using Jmol
COMPSTRU	Comparison of Crystal Structures with the same Symmetry
STRUCTURE RELATIONS	Evaluation of structure relationships [transformation matrix] between group-subgroup related phases
PSEUDOLATTICE	Pseudosymmetry of a lattice and compatible supergroups

The program COMPSTRU

The program COMPSTRU

How to measure the similarity between two descriptions ?

degree of lattice distortion

$$d_{av} = \frac{1}{n} \sum_{i} m_i u_i$$

 u_i atomic displacements

maximal atomic displacements

maximal displacements of the paired atoms

 $S = \frac{1}{3} \sqrt{\sum_{i} \eta_i^2}$

 η_i -eigenvalues of the Lagrangian strain tensor

How to measure the similarity between two descriptions ?

The program COMPSTRU

weighted mean difference between atomic coordinates relation between axial ratios

Bergerhoff et al., Acta Cryst B55 (1998)

Institute of Applied Geoscience Division Technical Petrophysics

Input – COMPSTRU

COMPSTRU:

https://www.cryst.ehu.es/cryst/compstru.html

Input:

Two crystal structures described in the standard setting

- Isopointal structures with the same/different composition
- Chiral structures

Structure Data [in CIF format]	Examinar No se ha seleccionado ningún archivo. HINT: [The option for a given filename is preferential]
Structure 1	15 13.800 5.691 9.420 90.0 102.3 90.0 7 Pb 1 4e 0.0000 0.2910 0.2500 Pb 2 8f 0.3170 0.3090 0.3520 P 1 8f 0.5990 0.2410 0.4470 0 1 8f 0.6430 0.0300 0.3920 0 2 8f 0.6340 0.4640 0.3740 0 3 8f 0.6420 0.2800 0.6120 0 4 8f 0.4910 0.2220 0.4200
	BCS format
Structure Data [in CIF format]	Examinar No se ha seleccionado ningún archivo. HINT: [The option for a given filename is preferential]
Structure 2	15 13.967 5.560 40.778 90.0 166.713 90.0 7 Pb 1 4e 0.0000 0.0000 0.7500 Pb 2 8f 0.0000 0.0000 0.8563 P 1 8f 0.0000 0.0000 0.9511 0 1 8f 0.0000 0.0000 0.9145 0 2 8f 0.2715 0.7285 0.8885 0 3 8f 0.9570 0.5000 0.1170 0 4 8f 0.7285 0.2715 0.6115 BCS format
Enter the maximum	distance allowed between the paired atoms: 1 Å
Enter the allowed t	olerance (a b c α β γ): .5 .5 .5 5 5 5 Toleranc

de la Flor et al. J. Appl. Cryst 49 (2016)

Are these two structures similar?

#Structure 1

#Structure 2

15							
13.800 5.691 9.420 90.0 102.3 90.0							
7							
Pb	1	4e	0.0000	0.2910	0.2500		
Pb	2	8f	0.3170	0.3090	0.3520		
Р	1	8f	0.5990	0.2410	0.4470		
0	1	8f	0.6430	0.0300	0.3920		
0	2	8f	0.6340	0.4640	0.3740		
0	3	8f	0.6420	0.2800	0.6120		
0	4	8f	0.4910	0.2220	0.4200		

15							
13.967 5.560 40.778 90.0 166.713							
90.	0						
7							
Pb	1	4e 0.0000	0.0000	0.7500			
Pb	2	8f 0.0000	0.0000	0.8563			
Р	1	8f 0.0000	0.0000	0.9511			
0	1	8f 0.0000	0.0000	0.9145			
0	2	8f 0.2715	0.7285	0.8885			
0	3	8f 0.9570	0.5000	0.1170			
0	4	8f 0.7285	0.2715	0.6115			

Comparison of crystal structures of the same symmetry C2/c (No. 15) [unique axis b]

Struct	ure #1					Structure #2					
15 13.800 7	5.691 9	.420 90	.0 102.3 90.0			15 13.96 7	7 5.560	40.778 9	0.0 166.713 90.	0	
Pb	1	4e	0.000000	0.291000	0.250000	Pb	1	4e	0.000000	0.000000	0.750000
Pb	2	8f	0.317000	0.309000	0.352000	Pb	2	8f	0.000000	0.000000	0.856300
P	1	8f	0.599000	0.241000	0.447000	P	1	8f	0.000000	0.00000	0.951100
0	1	8f	0.643000	0.030000	0.392000	0	1	8f	0.000000	0.00000	0.914500
0	2	8f	0.634000	0.464000	0.374000	0	2	8f	0.271500	0.728500	0.888500
0	3	8f	0.642000	0.280000	0.612000	0	3	8f	0.957000	0.500000	0.117000
0	4	8f	0.491000	0.222000	0.420000	0	4	8f	0.728500	0.271500	0.611500

The next step is to select a transformation that best matches the lattice parameters of the structures for the chosen tolerance (a b c $\alpha \beta \gamma$) = (.5 .5 .5 5 5):

Select	Transformation (P,p)	Cell parameters of the Structure #1 Cell parameters of the Structure #2 applying the transformation matrix					
۲	-a,-b,3a+c	13.8000 5.6910 9.4200 90.0000 102.3000 90.0000 13.9670 5.5600 9.6301 90.0000 103.2951 90.0000	0.0116				

Continue

COMPSTRU

 $Pb_3(PO_4)_2$

Structure #1

15					
13.800	5.691	9.420 90	0.0 102.3 90.0		
7					
Pb	1	4e	0.000000	0.291000	0.250000
Pb	2	8f	0.317000	0.309000	0.352000
P	1	8f	0.599000	0.241000	0.447000
0	1	8f	0.643000	0.030000	0.392000
0	2	8f	0.634000	0.464000	0.374000
0	3	8f	0.642000	0.280000	0.612000
0	4	8f	0.491000	0.222000	0.420000

WP				Atomic Displacements				
		Atom	u _x	uy	uz	u		
4e	(0,y,1/4)	Pb1	0.0000	-0.0410	0.0000	0.2333		
8f	(x,y,z)	Pb2	0.0019	-0.0590	0.0043	0.3386		
8f	(x,y,z)	P1	0.0043	0.0090	0.0041	0.0816		
8f	(x,y,z)	01	0.0010	-0.0085	-0.0035	0.0617		
8f	(x,y,z)	02	0.0100	0.0145	0.0145	0.1910		
8f	(x,y,z)	O3	0.0020	-0.0300	0.0050	0.1777		
8f	(x,y,z)	04	0.0025	0.0280	-0.0055	0.1733		

Evaluation of the structure similarity

S	d _{max.} (Å)	d _{av.} (Å)	Δ	
0.0116	0.3386	0.1755	0.066	

Structure #2

15					
13.967	5.560	40.778	90.0 166.713 90.0		
7					
Pb	1	4e	0.000000	0.000000	0.750000
Pb	2	8f	0.000000	0.00000	0.856300
Р	1	8f	0.00000	0.00000	0.951100
0	1	8f	0.000000	0.00000	0.914500
0	2	8f	0.271500	0.728500	0.888500
0	3	8f	0.957000	0.500000	0.117000
0	4	8f	0.728500	0.271500	0.611500

$$(P,p) = -a, -b, 3a + c; 1/4, 1/4, 0$$

Description of Structure #2 in the most similar configuration to Structure #1

015						
13.96	7000	5.560000	9.630055	90.000000	103.295059	90.000000
7						
Pb	1	4e	0.50	00000	0.250000	0.750000
Pb	2	8f	0.83	18900	0.250000	0.856300
P	1	8f	0.10	03300	0.250000	0.951100
0	1	8f	0.9	93500	0.250000	0.914500
0	2	8f	0.6	44000	0.521500	0.888500
0	3	8f	0.6	44000	0.750000	0.117000
0	4	8f	0.3	56000	0.978500	0.611500

Institute of Applied Geoscience Division Technical Petrophysics

Input – COMPSTRU

=13.967Å =5.560Å =9.630Å	Structure #1
=90.000° =103.295°	Structure #2
=90.000°	Structure #2 (most similar)
	Compare Structures
	Compare Lattices
	Atomic Displacements
	 a Structure 1. ⊡opaque i ball&stick ○ stick ○ cross Structure 2: ☑ opaque i ball&stick ○ stick ○ cross
	Show Distances
	cutoff: 0.5 🚖
	Save PNG+Jmol

Example: Structures with different composition

Belokoneva et al., 2003

structures equivalent?

Are these two

Egorova et al., 2008

Comparison of isopointal structures with different composition

Institute of Applied Geoscience Division Technical Petrophysics

Example: Structures with different composition

Structure #2

Comparison of crystal structures of the same symmetry Pnn2 (No. 34)

Structure #1

11.52	4 11.43	1 6.5399	90. 90. 90.			11.38	10 11.3840	6.56335	90. 90. 90.		
18						18					
Pb	1	4c	0.260700	0.042500	0.000000	Pb	1	4c	0.039700	0.252300	0.00
Pb	2	4c	0.028000	0.233700	0.663000	Pb	2	4c	0.240500	0.021900	0.3
Br	1	2a	0.000000	0.000000	0.893000	Cl	1	2a	0.000000	0.000000	0.1
Br	2	2b	0.000000	0.500000	0.626000	Cl	2	2b	0.500000	0.000000	0.3
0	1	4c	0.247000	0.317000	0.590000	0	1	4c	0.318400	0.238700	0.4
0	2	4c	0.209000	0.426000	0.179000	0	2	4c	0.427100	0.212600	0.8
0	3	4c	0.276000	0.226000	0.253000	0	3	4c	0.225600	0.271700	0.7
0	4	4c	0.078000	0.268000	0.241000	0	4	4c	0.274800	0.072000	0.7
0	5	4c	0.286000	0.455000	0.853000	0	5	4c	0.448100	0.286300	0.1
0	6	4c	0.388000	0.266000	0.842000	0	6	4c	0.260500	0.380800	0.1
0	7	4c	0.184000	0.272000	0.939000	0	7	4c	0.273900	0.180300	0.0
0	8	4c	0.418000	0.213000	0.500000	0	8	4c	0.210400	0.419200	0.5
0	9	4c	0.238000	0.116000	0.570000	0	9	4c	0.115700	0.232100	0.4
в	1	4c	0.275000	0.325000	0.800000	в	1	4c	0.322100	0.271200	0.2
в	2	4c	0.187000	0.298000	0.160000	в	2	4c	0.301500	0.181600	0.8
в	3	4c	0.296000	0.217000	0.480000	в	3	4c	0.217300	0.288900	0.5
В	4	4c	0.461000	0.235000	0.700000	в	4	4c	0.230700	0.458800	0.30
в	5	4c	0.250000	0.497000	0.030000	в	5	4c	0.498800	0.258300	0.93

Select	Transformation (P,p)	Cell parameters of the Structure #1 Cell parameters of the Structure #2 applying the transformation matrix	Strain
0	a,b,c	11.5240 11.4310 6.5399 90.0000 90.0000 90.0000 11.3810 11.3840 6.5633 90.0000 90.0000 90.0000	0.0046
۲	-b,-a,-c	11.5240 11.4310 6.5399 90.0000 90.0000 90.0000 11.3840 11.3810 6.5633 90.0000 90.0000 90.0000	0.0045

All equivalent unit-cell parameters are calculated and compared with the unitcell parameters of structure 1

Example: Structures with different composition

Comparison of crystal structures of the same symmetry Pnn2 (No. 34)

^		- 4	 	
S T	ru	CI	 ro.	-
– L	ıu			

Structure 2

34 11.38	10 1	1.3840	6.56335	90.90.90).	34 11.52	4 11	.431	6.5399 90.	90. 90.	
18						18					
Pb	1	4c	0.039700	0.252300	0.000100	Pb	1	4c	0.260700	0.042500	0.000000
Pb	2	4c	0.240500	0.021900	0.332600	Pb	2	4c	0.028000	0.233700	0.663000
Cl	1	2a	0.000000	0.000000	0.121800	Br	1	2a	0.000000	0.000000	0.893000
Cl	2	2b	0.500000	0.000000	0.381300	Br	2	2b	0.000000	0.500000	0.626000
0	1	4c	0.318400	0.238700	0.418600	0	1	4c	0.247000	0.317000	0.590000
0	2	4c	0.427100	0.212600	0.826900	0	2	4c	0.209000	0.426000	0.179000
0	3	4c	0.225600	0.271700	0.753700	0	3	4c	0.276000	0.226000	0.253000
0	4	4c	0.274800	0.072000	0.752600	0	4	4c	0.078000	0.268000	0.241000
0	5	4c	0.448100	0.286300	0.160800	0	5	4c	0.286000	0.455000	0.853000
0	6	4c	0.260500	0.380800	0.162500	0	6	4c	0.388000	0.266000	0.842000
0	7	4c	0.273900	0.180300	0.069800	0	7	4c	0.184000	0.272000	0.939000
0	8	4c	0.210400	0.419200	0.506500	0	8	4c	0.418000	0.213000	0.500000
0	9	4c	0.115700	0.232100	0.438700	0	9	4c	0.238000	0.116000	0.570000
в	1	4c	0.322100	0.271200	0.203400	в	1	4c	0.275000	0.325000	0.800000
в	2	4c	0.301500	0.181600	0.854700	в	2	4c	0.187000	0.298000	0.160000
в	3	4c	0.217300	0.288900	0.534400	в	3	4c	0.296000	0.217000	0.480000
в	4	4c	0.230700	0.458800	0.308800	в	4	4c	0.461000	0.235000	0.700000
в	5	4c	0.498800	0.258300	0.976800	в	5	4c	0.250000	0.497000	0.030000

The similarity of the two structures will be evaluated taking into account the following correspondence between the atomic species:

Structure #1	Structure #2			
CI	Br			
0	0			
Pb	Pb			
В	В			

Do you agree with the proposed correspondence scheme?

Yes No

DIFFERENT COMPOSITION

Institute of Applied Geoscience Division Technical Petrophysics

Example: Chiral Structures

P3₂21 (No. 154)

#ICSD: 158620										
152	152									
4.5191 4.5191 10.471 90. 90. 120.										
4										
Al 1 3a 0.441200 0.0	00000 0.333333									
P 1 3b 0.437300 0.0	00000 0.833300									
O 1 6c 0.398200 0.3	32600 0.385500									
O 2 6c 0.389200 0.2	97900 0.868700									

#ICSD: 50100									
154									
4.9438 4.9438 10.9498 90. 90. 120.									
1	3a	0.466460	0.000000	0.666667					
1	3b	0.466900	0.000000	0.166700					
1	6c	0.416400	0.291900	0.602540					
2	6c	0.415500	0.257400	0.116180					
	CSI 4 438 1 1 1 2	CSD: 50 4 438 4.9 1 3a 1 3b 1 6c 2 6c	CSD: 50100 4 438 4.9438 10.949 1 3a 0.466460 1 3b 0.466900 1 6c 0.416400 2 6c 0.415500	CSD: 50100 4 438 4.9438 10.9498 90. 90. 1 1 3a 0.466460 0.000000 1 3b 0.466900 0.000000 1 6c 0.416400 0.291900 2 6c 0.415500 0.257400					

Example: Chiral Structures

Structure #1

152					
4.5191	4.5191	10.471	90. 90. 120.		
4					
Al	1	Зa	0.441200	0.000000	0.333333
P	1	3b	0.437300	0.000000	0.833300
0	1	6c	0.398200	0.332600	0.385500
0	2	6c	0.389200	0.297900	0.868700

Structure #2

Atom pairings and distances

	Atom Mappings										
WP A		Atom	Coordinates in S ₁	Atom	Coordinates in S ₂						
3a	(x,0,1/3)	Al1	(0.441200,0.000000,0.333333)	Al1	(0.466460,0.000000,0.333333)						
3b	(x,0,5/6)	P1	(0.437300,0.000000,0.833300)	P1	(0.466900,0.000000,0.833300)						
6c	(x,y,z)	01	(0.398200,0.332600,0.385500)	01	(0.416400,0.291900,0.397460)						
6c	(x,y,z)	02	(0.389200,0.297900,0.868700)	02	(0.415500,0.257400,0.883820)						

WP		Atom	Atomic Displacements			
			u _x	uy	uz	u
3a	(x,0,1/3)	Al1	0.0253	0.0000	0.0000	0.1142
3b	(x,0,5/6)	P1	0.0296	0.0000	0.0000	0.1338
6c	(x,y,z)	01	0.0182	-0.0407	0.0120	0.2672
6c	(x,y,z)	02	0.0263	-0.0405	0.0151	0.3073

The enantiomorphic description of Structure #2 in the most similar configuration to Structure #1

152				~~ ~~ ~~~ ~~~	
4.943	800 4.9	43800 10.9	49800 90.0000	00 90.000000 120.	000000
4					
Al	1	Зa	0.466460	0.00000	0.333333
P	1	3b	0.466900	0.00000	0.833300
0	1	6c	0.416400	0.291900	0.397460
0	2	6C	0.415500	0.257400	0.883820

S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0413	0.3073	0.2328	0.107

Isopointal and isoconfigurational structures

Two structures are defined as *isopointal* if:

- (1) they have the same space-group type or belong to a pair of enantiomorphic space groups, and
- (2) the atomic positions are the same in both structures
- Two structures are defined as *isoconfigurational* (or belonging to the same structure type) if
 - (1) they are isopointal, and
 - (2) for all corresponding Wyckoff positions, both, the crystallographic configurations (crystallographic orbits) and their geometric interrelationships, are similar.

Lima-de Faria et al. Acta Cryst. (1990), A41, 1

Structure types - COMPSTRU

ABX6 family R-3 (148);WP sequence: fba; Pearson: hR8

