

Crystal-Structure Tools

Crystallography Online: Workshop on the use and applications of the structural and magnetic tools of the Bilbao Crystallographic Server

POSSIBLE SYMMETRIES OF DISTORTED STRUCTURES

bilbao crystallographic server

Group-Subgroup Relations of Space Groups

SUBGROUPGRAPH	Lattice of Maximal Subgroups
HERMANN	Distribution of subgroups in conjugated classes
COSETS	Coset decomposition for a group-subgroup pair
WYCKSPLIT	The splitting of the Wyckoff Positions
MINSUP	Minimal Supergroups of Space Groups
SUPERGROUPS	Supergroups of Space Groups
CELLSUB	List of subgroups for a given k-index.
CELLSUPER	List of supergroups for a given k-index.
NONCHAR	Non Characteristic orbits.
COMMONSUBS	Common Subgroups of Space Groups
COMMONSUPER	Common Supergroups of Two Space Groups
INDEX	Index of a group subgroup pair
SUBGROUPS	Subgroups of a space group consistent with some given supercell, propagation vector(s) or irreducible representation(s)

B-IncStrDB 02/2022: New version of

Determine and explore online all possible symmetries that can result from the distortion of a parent structure of higher symmetry

database any published magnetic structure not ye included in the collection.

Double point and space groups

SUBGROUPS: https://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_cell.pl

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Parent space group Subgroups Enter the serial number of the space group: choose it The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph Introduce the supercell showing the group-subgroup hierarchy, grouped into Minimal conjugacy classes. More optional information about the classes or subgroups is also given. Alternatively give the modulation wave-vectors input Other alternatives for the input of the program: a_s= b_s= c_s= Supercell or 0 0 11 а а Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of + + The supercell is centred: + modulation wave-vector lowest symmetry, common point group of lowest symmetry, or 0 1 b 0 b Ρv groups which belong to a specific crystal class. Instead of a supercell, a set of modulation wave vectors can + + be given, including complete or partial wave-vectors stars. 0 0 с 1 С The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave Include the subgroups compatible with intermediate cells. vector(s) when the previous option is used) can be included. (It is not applied when only the maximal subgroups are calculated) . When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff positions of the atoms and/or a set of irreducible representations. Optional: refine further the subgroups of the output giving the Wyckoff positions of the atoms Give the Wyckoff positions Wyckoff Tutorial SUBGROUPS: download See the Help for details Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter). Possible limitations of the subgroup list. Other alternatives to (Check only one option on the left and the specific value on the right) filtered the results of the (Check only one option on the left and the specific value on the right) Lowest space group to consider choose it 1 Lowest point group to consider × program Lowest crystal system to consider Only maximal subgroups Further limitations considering physical properties of the point groups · Only centrosymmetric/non centrosymmetric groups al · Only polar/non polar groups all · Only proper ferroelastic phase transitions no 🗸 List of subgroups Graph of subgroups

Example 1: Fullerene-cubane crystal

High-temperature phase

*Fm*3*m* (No. 225)

Nature Mat. 4, 764 (2005)

Disordered fullerenes molecules 4a(0,0,0)

Disordered cubane molecules 4b (1/2, 1/2, 1/2)

Power diffraction experiments

Low-temperature phase

Orthorhombic structure

 $a_o \approx b_o \approx \frac{a_c}{\sqrt{2}}; c_o \approx 2a_c$

J. Phys. Chem. B 113, 2042 (2009)

Example 1: Fullerene-cubane crystal (a)

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program *Subgroups* provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the groupsubgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

• Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

• Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial

Example 1: Fullerene-cubane crystal (a)

List of subgroups that fulfill the given conditions

Get the subgroup-graph

N	Group Symbol	Trans	forma	ation m	natrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	P4 ₂ /ncm (No. 138)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
2	P4 ₂ /nmc (No. 137)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	1/4 0 1/4)	12=4x3	Conjugacy Class	Get irreps
3	P4 ₂ /mcm (No. 132)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
4	P4 ₂ /mmc (No. 131)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	0 0 0	12=4x3	Conjugacy Class	Get irreps
5	<i>P4/ncc</i> (No. 130)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ 1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
6	P4/nmm (No. 129)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
7	<i>P4/mcc</i> (No. 124)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\left(\begin{smallmatrix} 0\\ 0\\ 0\\ 0 \end{smallmatrix} \right)$	12=4x3	Conjugacy Class	Get irreps
8	P4/mmm (No. 123)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
9	<i>P</i> 4 <i>c</i> 2 (No. 116)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 1/4 \\ 1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
10	<i>P</i> 4 <i>c</i> 2 (No. 116)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	0 0 0	24=4x6	Conjugacy Class	Get irreps
11	<i>P</i> 4 <i>m</i> 2 (No. 115)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps

Input data

Subgroups of the space group :	<i>Fm</i> <u>3</u> <i>m</i> (N. 225)
Lowest space group to consider:	<i>P</i> 1 (N. 1)
Supercell given by:	(1/2,-1/2,0),(1/2,1/2,0),(0,0,2)
Centred supercell:	No

90	<i>Pm</i> (No. 6)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$./2 ./2 0	0 0 -2	-1/2 1/2 0	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	96=4x24	Conjugacy Class	Get irreps
91	C2 (No. 5)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ 1/4 \end{pmatrix}$	96=4x24	Conjugacy Class	Get irreps
92	C2 (No. 5)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\0\\1/2 \end{pmatrix}$	96=4x24	Conjugacy Class	Get irreps
93	<i>P</i> 2 ₁ (No. 4)	$\begin{pmatrix} 1\\ -1 \end{pmatrix}$	/2 /2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} -1/8 \\ 1/8 \\ 1/4 \end{pmatrix}$	96=4x24	Conjugacy Class	Get irreps
94	<i>P</i> 2 ₁ (No. 4)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$./2 ./2 0	0 0 -2	-1/2 1/2 0	0 0 0	96=4x24	Conjugacy Class	Get irreps
95	<i>P</i> 2 (No. 3)	$\begin{pmatrix} 1\\ -1 \end{pmatrix}$	/2 /2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	96=4x24	Conjugacy Class	Get irreps
96	<i>P</i> 2 (No. 3)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	/2 /2 0	0 0 -2	-1/2 1/2 0	0 0 0	96=4x24	Conjugacy Class	Get irreps
97	<i>P</i> 1 (No. 2)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	/2 /2 0	-1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	96=4x24	Conjugacy Class	Get irreps
98	<i>P</i> 1 (No. 2)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$./2 ./2 0	-1/2 1/2 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	96=4x24	Conjugacy Class	Get irreps
99	<i>P</i> 1 (No. 1)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$./2 ./2 0	-1/2 1/2 0	0 0 2	0 0 0	192=4x48	Conjugacy Class	Get irreps

99 subgroups

Example 1: Fullerene-cubane crystal (a)

Go back to the input page								
Enter the serial number of the space group: choose it 225								
a _s = 1/2_a + ⊡1/2_b + 0c	$\begin{array}{c} \text{Intra}\\ \text{Atternatively}\\ b_{\text{S}}\text{=}\\ 1/2 \text{a}\\ +\\ 1/2 \text{b}\\ +\\ 0 \text{c} \end{array}$	roduce the super give the modulation $c_S^=$ 0 a + 0 b + 2 c	cell wave-vectors The supercell is centred:					

Possible limitations of the subgroup list.							
(Check only one option on the left and the specific value on the r	ight)						
(Check only one option on the left and the specific value or	n the right)						
○ Lowest space group to consider	choose it 1						
O Lowest point group to consider	•						
Iowest crystal system to consider	Orthorhombic ~						
 Only maximal subgroups 							

-								
N	Group Symbol	Trans	sform	ation n	natrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	P4 ₂ /ncm (No. 138)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
2	P4 ₂ /nmc (No. 137)	$ \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix} $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ 1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
3	P4 ₂ /mcm (No. 132)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
4	P4 ₂ /mmc (No. 131)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	0 0 0	12=4x3	Conjugacy Class	Get irreps
5	P4/ncc (No. 130)	$ \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix} $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ 1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
6	P4/nmm (No. 129)	$ \left(\begin{array}{c} 1/2 \\ -1/2 \\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps

60	<i>P</i> 2 ₁ 2 ₁ 2 (No. 18)	$ \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix} $	1/2 1/2 0	0 0 2	0 0 -1/4)	48=4x12	Conjugacy Class	Get irreps
61	<i>P</i> 222 ₁ (No. 17)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	48=4x12	Conjugacy Class	Get irreps
62	<i>P</i> 222 (No. 16)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	48=4x12	Conjugacy Class	Get irreps

The list of maximal subgroups is reduced from 99 to 62

Most of them can be discarded symmetry higher than orthorhombic

Orthorhombic point groups: 222, mm2 or mmm

Example 1: Fullerene-cubane crystal (b)

List of subgroups that fulfill the given conditions

Get the subgroup-graph

Go back to the input page												
Enter the serial number of the space group: Choose it 225												
	$\label{eq:asymptotic} \begin{array}{c} \mbox{Introduce the supercell} \\ \mbox{Alternatively give the modulation wave-vectors} \\ \mbox{a}_{s}{=} \qquad \mbox{b}_{s}{=} \qquad \mbox{c}_{s}{=} \end{array}$											
	+ -1/2 b + 0 c	1/2 d + 1/2 b + 0 C	0 4 + 0 b + 2 C	The supercell is centred:								

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right)

(Check only one option on the left and the specific v	value on	the right)
---	----------	------------

i i i i

~ ~

 Lowest space group to consider 	choose it 1
Lowest point group to consider	8: mmn
 Lowest crystal system to consider 	
○ Only maximal subgroups	

N	Group Symbol	Т	ransf	form	ation r	natrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	P4 ₂ /ncm (No. 138)		1/2 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
2	P4 ₂ /nmc (No. 137)	(-1	1/2 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
3	P4 ₂ /mcm (No. 132)	(-1	1/2 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
4	P4 ₂ /mmc (No. 131)		1/2 1/2 0	1/2 1/2 0	0 0 2	0 0 1/2	12=4x3	Conjugacy Class	Get irreps
5	P4/ncc (No. 130)	(-1	1/2 1/2 0	1/2 1/2 0	0 0 2	1/4 0 -1/4	12=4x3	Conjugacy Class	Get irreps
6	P4/nmm (No. 129)		1/2 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
7	P4/mcc (No. 124)		1/2 1/2 0	1/2 1/2 0	0 0 2	0 0 1/2	12=4x3	Conjugacy Class	Get irreps
8	P4/mmm (No. 123)	(-1	1/2 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
9	Ccce (No. 68)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
10	Cmme (No. 67)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
11	<i>Cccm</i> (No. 66)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
12	Cmmm (No. 65)	(1 0 0	0 1 0	0 0 2	0 0 1/2	24=4x6	Conjugacy Class	Get irreps
13	<i>Cmce</i> (No. 64)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
14	<i>Cmcm</i> (No. 63)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
15	Pnma (No. 62)	(0 0 -2	1/2 1/2 0	1/2 -1/2 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
16	<i>Pmmn</i> (No. 59)		1/2 - 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
17	Pccn (No. 56)		1/2 - 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
18	<i>Pmma</i> (No. 51)	(0 0 -2	1/2 1/2 0	1/2 -1/2 0	0 0 1/2	24=4x6	Conjugacy Class	Get irreps
19	Pccm (No. 49)		1/2 - 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
20	Pmmm (No. 47)	(-1	1/2 1/2 0	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps

Example 1: Fullerene-cubane crystal (b)

Input data

Graph showing the group-subgroup hierarchy of these 20 subgroups

Example 1: Fullerene-cubane crystal (b)

N	Group Symbol	Trans	sform	ation	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	P4 ₂ /ncm (No. 138)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
2	P4 ₂ /nmc (No. 137)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
3	P4 ₂ /mcm (No. 132)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
4	P4 ₂ /mmc (No. 131)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
5	P4/ncc (No. 130)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
6	P4/nmm (No. 129)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	1/4 0 -1/4	12=4x3	Conjugacy Class	Get irreps
7	P4/mcc (No. 124)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	0 0 1/2	12=4x3	Conjugacy Class	Get irreps
8	P4/mmm (No. 123)	$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	12=4x3	Conjugacy Class	Get irreps
9	Ccce (No. 68)		0 1 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
10	Cmme (No. 67)		0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
11	<i>Cccm</i> (No. 66)		. 0) 1) 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
12	Cmmm (No. 65)		. 0) 1) 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
13	<i>Cmce</i> (No. 64)	$\begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$	1 0 0	0 0 2	$\begin{pmatrix} 1/4 \\ 0 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
14	<i>Cmcm</i> (No. 63)) 1 . 0) 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
15	<i>Pnma</i> (No. 62)	$\begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$	1/2 1/2 0	1/2 -1/2 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
16	<i>Pmmn</i> (No. 59)	$ \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} $	-1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
17	<i>Pccn</i> (No. 56)	$\begin{pmatrix} 1/2\\ 1/2\\ 0 \end{pmatrix}$	-1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
18	<i>Pmma</i> (No. 51)		1/2 1/2 0	1/2 -1/2 0	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
19	<i>Pccm</i> (No. 49)	$ \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} $	-1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
20	<i>Pmmm</i> (No. 47)	$ \left(\begin{array}{c} 1/2\\ -1/2\\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps

Tetragonal subgroups

C centered orthorhombic

The unit cell of the LS-phase is known to primitive orthorhombic

6 possible symmetries

Example 1: Fullerene-cubane crystal (c)

15	<i>Pnma</i> (No. 62)	$\begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$	1/2 1/2 0	1/2 -1/2 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
16	<i>Pmmn</i> (No. 59)	$\begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$	-1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
17	<i>Pccn</i> (No. 56)	$\begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$	-1/2 1/2 0	0 0 2	0 1/4 -1/4	24=4x6	Conjugacy Class	Get irreps
18	<i>Pmma</i> (No. 51)		1/2 1/2 0	1/2 -1/2 0	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
19	<i>Pccm</i> (No. 49)	$\begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$	-1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
20	Pmmm (No. 47)	$ \left(\begin{array}{c} 1/2 \\ -1/2 \\ 0 \end{array}\right) $	1/2 1/2 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps

The irreducible representations of the parent structure that are compatible with this specific symmetry for the distorted structure

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

Group→subgroup	Transfo	ormation	matrix
<i>Fm</i> 3 <i>m</i> (N. 225)→ <i>Pnma</i> (N. 62)	0 1	1/2 1/2	0
	0 1	1/2 -1/2	1/4
	-2	0 0	-1/4

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps	
	GM ₁ ⁺ : (a)	<i>Fm</i> 3 <i>m</i> (No. 225) a,b,c;0,0,0		
GM: (0,0,0)	GM ₃ ⁺ : (a,0)	/4/ <i>mmm</i> (No. 139) a/2-b/2,a/2+b/2,c;0,0,0	matrices of the irreps	
	GM ₅ ⁺ : (a,0,0)	<i>Immm</i> (No. 71) a/2+b/2,-1/2a+b/2,c;0,0,0		
DT: (0,1/2,0)(1/2,0,0)(0,0,1/2)	DT ₅ : (0,0,0,0,0,0,0,0,a,0,0,a)	<i>Pnma</i> (No. 62) -2c,a/2+b/2,a/2-b/2;0,1/4,-1/4	matrices of the irreps	
	X 7: (0,0, a)	P4 ₂ /nmc (No. 137)		
X: (0,1,0)(1,0,0)(0,0,1)	∧ ₂ . (0,0,a)	a/2-b/2,a/2+b/2,c;0,1/4,1/4	matrices of the irreps	
X. (0, 1,0)(1,0,0)(0,0,1)	X ₃ -: (0,0,a)	P4/nmm (No. 129) a/2-b/2,a/2+b/2,c;1/4,0,1/4	manees of the mops	

The symmetry break $Fm\overline{3}m \rightarrow Pnma$ can be realized through a Landau type phase transition

Example 1: Fullerene-cubane crystal (d)

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

Group→subgroup	Transformation matrix
<i>Fm</i> 3m (N. 225)→ <i>Pnma</i> (N. 62)	$\left(\begin{array}{ccccc} 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & -1/2 & 1/4 \\ -2 & 0 & 0 & -1/4 \end{array}\right)$

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps	
	GM ₁ ⁺ : (a)	<i>Fm</i> 3 <i>m</i> (No. 225) a,b,c;0,0,0		
GM: (0,0,0)	GM ₃ ⁺ : (a,0)	/4/ <i>mmm</i> (No. 139) a/2-b/2,a/2+b/2,c;0,0,0	matrices of the irreps	
	GM ₅ ⁺ : (a,0,0)	<i>Immm</i> (No. 71) a/2+b/2,-1/2a+b/2,c;0,0,0		
DT: (0,1/2,0)(1/2,0,0)(0,0,1/2)	DT ₅ : (0,0,0,0,0,0,0,0,a,0,0,a)	<i>Pnma</i> (No. 62) -2c,a/2+b/2,a/2-b/2;0,1/4,-1/4	matrices of the irreps	
	X (0.0.2)	<i>P</i> 4 ₂ / <i>nmc</i> (No. 137)		
X: (0,1,0)(1,0,0)(0,0,1)	×2 : (0,0,a)	a/2-b/2,a/2+b/2,c;0,1/4,1/4	matrices of the irrens	
	X ₃ -: (0,0,a)	<i>P</i> 4/ <i>nmm</i> (No. 129) a/2-b/2,a/2+b/2,c;1/4,0,1/4		

Example 1: Fullerene-cubane crystal (e)

Use the option *Get irreps* for the other possible symmetries

15	<i>Pnma</i> (No. 62)	(0 1/2 0 1/2 2 0	1/2 -1/2 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
16	<i>Pmmn</i> (No. 59)	$\begin{pmatrix} 1/\\ 1/\end{pmatrix}$	2 -1/2 2 1/2 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
17	<i>Pccn</i> (No. 56)	$\begin{pmatrix} 1/\\ 1/\end{pmatrix}$	2 -1/2 2 1/2 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
18	<i>Pmma</i> (No. 51)	(0 1/2 0 1/2 2 0	1/2 -1/2 0	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
19	<i>Pccm</i> (No. 49)	$\begin{pmatrix} 1/\\ 1/\end{pmatrix}$	2 -1/2 2 1/2 0 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps
20	<i>Pmmm</i> (No. 47)	$\begin{pmatrix} 1/\\ -1/\end{pmatrix}$	2 1/2 2 1/2 0 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	24=4x6	Conjugacy Class	Get irreps

Only two of the symmetries can be result of a single irrep order parameter (fulfill the Landau condition)

DT5

$$Fm\overline{3}m \rightarrow Pnma (-2c, -1/2a + 1/2b, 1/2a - 1/2b; 0, 1/4, -1/4)$$

DT5
 $Fm\overline{3}m \rightarrow Pmma (-2c, 1/2a + 1/2b, 1/2a - 1/2b; 0, 0, 1/2)$

Example 1: Fullerene-cubane crystal (f)

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

Group→subgroup	Transformation matrix
<i>Fm</i> 3 <i>m</i> (N. 225)→ <i>Pmmn</i> (N. 59)	$\left(\begin{array}{rrrrr} 1/2 & -1/2 & 0 & 0\\ 1/2 & 1/2 & 0 & 1/4\\ 0 & 0 & 2 & -1/4 \end{array}\right)$

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
	GM1 ⁺ : (a)	<i>Fm</i> 3 <i>m</i> (No. 225) a,b,c;0,0,0	
GM: (0,0,0)	GM ₃ ⁺ : (a,0)	/4/ <i>mmm</i> (No. 139) a/2-b/2,a/2+b/2,c;0,0,0	matrices of the irreps
	GM ₅ ⁺ : (a,0,0)	<i>Immm</i> (No. 71) a/2+b/2,-1/2a+b/2,c;0,0,0	
	DT ₁ : (0,0,0,0,a,a)	<i>P</i> 4/ <i>nmm</i> (No. 129) a/2-b/2,a/2+b/2,2c;1/4,0,-1/4	
D1: (0,1/2,0)(1/2,0,0) (0,0,1/2)	DT ₃ : (0,0,0,0,a,-a)	P4 ₂ /nmc (No. 137)	matrices of the irreps
X: (0, 1, 0)(1, 0, 0)(0, 0, 1)	X ₂ -: (0,0,a)	P4 ₂ / <i>nmc</i> (No. 137) a/2-b/2,a/2+b/2,c;0,1/4,1/4	matrices of the irrens
X. (0, 1, 0)(1, 0, 0) (0, 0, 1)	X ₃ -: (0,0,a)	<i>P</i> 4/ <i>nmm</i> (No. 129) a/2-b/2,a/2+b/2,c;1/4,0,1/4	matrices of the ineps

Example 1: Fullerene-cubane crystal (g)

Do the same process as in the previous step for the other 3 possible symmetries

Example 1: Fullerene-cubane crystal (h)

Go back to the input page								
Enter the serial numb	Enter the serial number of the space group: the serial number of the space group:							
as= 1/2 + -1/2 + 0	Internative bs= 1/2 a + 1/2 b + 0 $(1/2)$ b +	roduce the supe y give the modulation C _S = 0 a + 0 b + 2 C	The supercell is centred:					

This option allows to discard all possible symmetries that cannot be reached by the action of a **single** *irrep* distortion

Example 1: Fullerene-cubane crystal (h)

This condition reduces the number of possible distinct symmetries from 99 to 31

From the six-non-centered subgroups with point group *mmm*, only the subroups of type *Pnma* and *Pmma* appear here

Example 2: Parent space group *Pnma*

Let us suppose that we observe a structure with symmetry *Pnma*, which exhibits when lowering the temperature a phase transition. Diffraction experiments in the low symmetry phase give evidence of superstructure reflections, which can be indexes as (h, k, l + 1/2).

This additional diffraction peaks indicates a **distortion** \Rightarrow the c parameter

Modulation wave vector (0, 0, 1/2)

We wish to know the possible space group symmetries that this low temperature phase can have, in order to construct structural models that could fit the diffraction data

Example 2: Parent space group *Pnma* (a)

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program *Subgroups* provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the groupsubgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

• Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

Enter the serial number of the space group: 62								choose it 62
			Alternativ	ntro	duce the	SU		
			Alternativ	eiy g	ive the mod	ula	tion wave-vectors	
	as	,=	b _s =		c _s =			
	1	a	0	а	0	а		
	4	F	+		+		The supe	rcell is centred:
	0	b	1	b	0	b		Pv
	-	F	+		+			
	0	С	0	С	2	С		

. . .

Example 2: Parent space group *Pnma* (a)

Input data

Subgroups of the space group :
Lowest space group to consider:
Supercell given by:
Centred supercell:

Pnma (N. 62) *P*1 (N. 1) (1,0,0),(0,1,0),(0,0,2) No

List of subgroups that fulfill the given conditions

Get the subgroup-graph

N	Group Symbol	Transformation matrix				matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pca</i> 2 ₁ (No. 29)	(0 0 -2	0 1 0	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	<i>Pmc</i> 2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
3	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	(1 0 0	0 1 0	0 0 2	0 0 0	4=2x2	Conjugacy Class	Get irreps
4	<i>P</i> 2 ₁ / <i>m</i> (No. 11)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
5	<i>Pc</i> (No. 7)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 0 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
6	<i>Pc</i> (No. 7)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
7	<i>Pm</i> (No. 6)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
8	<i>P</i> 2 ₁ (No. 4)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
9	<i>P</i> 2 ₁ (No. 4)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
10	<i>P</i> 1 (No. 2)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
11	<i>P</i> 1 (No. 1)	(1 0 0	0 1 0	0 0 2	0 0 0	16=2x8	Conjugacy Class	Get irreps

Without any additional restriction the program lists 11 possible space group symmetries

Example 2: Parent space group *Pnma* (b)

Example 2: Parent space group *Pnma* (b)

Go back to the input page

Possible limitations of the subgroup list.	
(Check only one option on the left and the specific value on the right)	
(Check only one option on the left and the specific value on the right)	
○ Lowest space group to consider	choose it 1
○ Lowest point group to consider	v
$^{\bigcirc}$ Lowest crystal system to consider	v
Only maximal subgroups	

List of subgroups that fulfill the given conditions

Get the subgroup-graph

N	Group Symbol		Trans	forma	tion	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pca</i> 2 ₁ (No. 29)	$\left(\right)$	0 0 -2	0 1 0	1 0 0	$\left. \begin{smallmatrix} 0\\ 1/4\\ -1/4 \end{smallmatrix} \right)$	4=2x2	Conjugacy Class	Get irreps
2	<i>Ртс</i> 2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\left. \begin{smallmatrix} 0\\ 1/4\\ -1/4 \end{smallmatrix} \right)$	4=2x2	Conjugacy Class	Get irreps
3	<i>P</i> 2 ₁ /c (No. 14)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
4	<i>P</i> 2 ₁ / <i>m</i> (No. 11)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\0\\1/2 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps

Example 2: Parent space group Pnma (c)

Go back to the input page

Possible limitations of the subgroup list.	
(Check only one option on the left and the specific value on the ri (Check only one option on the left and the specific value on	^{ght)} the right)
Lowest space group to consider	choose it
 Lowest point group to consider 	•
$^{\bigcirc}$ Lowest crystal system to consider	¥
○ Only maximal subgroups	

Further limitations considering physical properties of the point groups

٠	Only centrosymmetric/non centrosymmetric groups	all	

- Only polar/non polar groups
 Polar
- Only proper ferroelastic phase transitions

List of subgroups that fulfill the given conditions

Get the subgroup-graph

N	Group Symbol	symbol Transformation matrix G		Group-Subgroup index	Other members of the Conjugacy Class	irreps			
1	<i>Pca</i> 2 ₁ (No. 29)	(0 0 -2	0 1 0	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	<i>Pmc</i> 2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
3	<i>Pc</i> (No. 7)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 0 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
4	<i>Pc</i> (No. 7)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
5	<i>Pm</i> (No. 6)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
6	<i>P</i> 2 ₁ (No. 4)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
7	<i>P</i> 2 ₁ (No. 4)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
8	<i>P</i> 1 (No. 1)	(1 0 0	0 1 0	0 0 2	0 0 0	16=2x8	Conjugacy Class	Get irreps

~

no 🗸

Example 2: Parent space group *Pnma* (d)

Go back to the input page

Possible limitations of the subgroup	list.
(Check only one option on the left and the specific value	on the right)
(Check only one option on the left and the specifi right)	c value on the
• Lowest space group to consider	choose it
○ Lowest point group to consider	v
$^{\bigcirc}$ Lowest crystal system to consider	🗸
○ Only maximal subgroups	

urther limitations considering physical properties of the	1
point groups	

 Only centrosymmetric/non centrosymmetric groups 	all	~
Only polar/non polar groups	a	II ~
Only proper ferroelastic phase transitions		no 🗸

N	Group Symbol	Transformation matrix		Group-Subgroup index	Other members of the Conjugacy Class	irreps			
1	<i>Pca</i> 2 ₁ (No. 29)	(0 0 -2	0 1 0	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	Ртс2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
3	<i>P</i> 2 ₁ /c (No. 14)	((1 0 0	0 1 0	0 0 2	0 0 0	4=2x2	Conjugacy Class	Get irreps
4	<i>P</i> 2 ₁ / <i>m</i> (No. 11)	((1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\0\\1/2 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
5	<i>Pc</i> (No. 7)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0\\ 0\\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
6	<i>Pc</i> (No. 7)	((1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
7	<i>Pm</i> (No. 6)	((1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\1/4\\0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
8	<i>P</i> 2 ₁ (No. 4)	((1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
9	<i>P</i> 2 ₁ (No. 4)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
10	<i>P</i> 1 (No. 2)	((1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
11	<i>P</i> 1 (No. 1)	((1 0 0	0 1 0	0 0 2	0 0 0	16=2x8	Conjugacy Class	Get irreps

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps	
	GM ₁ ⁺ : (a)	<i>Pnma</i> (No. 62) a,b,c;0,0,0		
GM: (0,0,0)	GM ₃ ⁻: (a)	<i>Pmc</i> 2 ₁ (No. 26) b,-c,-a;0,1/4,1/4	mances of the freps	
Z: (0,0,1/2)	Z ₂ : (a,a)	<i>Pca</i> 2 ₁ (No. 29) -2c,b,a;0,1/4,-1/4	matrices of the irreps	

Example 2: Parent space group *Pnma* (e)

choose it

×

 \sim

×

~

no 🗸

1

all

Go back to the input page

Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter).

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right) (Check only one option on the left and the specific value on the right)

- Lowest space group to consider
- Lowest point group to consider
- \odot Lowest crystal system to consider
- Only maximal subgroups

Further limitations considering physical properties of the point groups

- Only centrosymmetric/non centrosymmetric groups
- Only polar/non polar groups
- Only proper ferroelastic phase transitions

List of subgroups

• Graph of subgroups

all

List of subgroups that can be the result of a Landau-type transition

Get the subgroup-graph

N	Group Symbol	Transformation matrix				matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pca</i> 2 ₁ (No. 29)	(0 0 -2	0 1 0	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	<i>Pmc</i> 2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
3	<i>P</i> 2 ₁ /c (No. 14)	(1 0 0	0 1 0	0 0 2	0 0 0	4=2x2	Conjugacy Class	Get irreps
4	<i>P</i> 2 ₁ / <i>m</i> (No. 11)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
5	<i>Pc</i> (No. 7)	((1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
6	<i>Pm</i> (No. 6)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps

Example 2: Parent space group Pnma (f)

C	o back to the i	nput page											
Enter the serial num	Enter the serial number of the space group: 62												
a _s = 1a + 0b + 0c	Introduce the su Alternatively give the modula $b_s = c_s =$ 0 a 0 a + + 1 b 0 b + + 0 c 2 c	tion wave-vectors The supercell is centred:											

Subgroups

The program *Subgroups* provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given. Enter the serial number of the space group:

Example 2: Parent space group *Pnma* (g)

List of subgroups that fulfill the given conditions

Get the subgroup-graph

N	Group Symbol	T	ransf	orma	tion I	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pca</i> 2 ₁ (No. 29)	(0 0 -2	0 1 0	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	<i>Pmc</i> 2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
3	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	(1 0 0	0 1 0	0 0 2	0 0 0	4=2x2	Conjugacy Class	Get irreps
4	<i>P</i> 2 ₁ / <i>m</i> (No. 11)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
5	<i>Pc</i> (No. 7)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0\\ 0\\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
6	<i>Pc</i> (No. 7)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
7	<i>Pm</i> (No. 6)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
8	<i>P</i> 2 ₁ (No. 4)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
9	<i>P</i> 2 ₁ (No. 4)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
10	<i>P</i> 1 (No. 2)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
11	<i>P</i> 1 (No. 1)	(1 0 0	0 1 0	0 0 2	0 0 0	16=2x8	Conjugacy Class	Get irreps

Example 2: Parent space group *Pnma* (h)

Go back to the input page

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program *Subgroups* provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

• Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

• Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wave-vectors stars.

• The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be included.

• When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff positions of the atoms and/or a set of irreducible representations.

Enter the serial number of the space group:	choose it 62
Introduce the wave vector(s)	
(Give the components of the wave vectors in a fractional form, n/m)	
k_{1x} 0 k_{1y} 0 k_{1z} 1/2	
Show the independent vectors of the star	
Choose the whole star of the propagation vector	
More wave-vectors needed	

□ Include the subgroups compatible with intermediate cells.

(It is not applied when only the maximal subgroups are calculated)

Optional: refine further the subgroups of the output giving the Wyckoff positions of the atoms

Give the Wyckoff positions

Wyckoff

□ Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter).

Optional: refine further the subgroups of the output giving a set of irreps

Representations

Example 2: Parent space group *Pnma* (h)

The possible irreps that can describe such type of distortion

Space group: (No. 62) Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):

Z:(0,0,1/2)

Descomposition of the mechanical representation(s) into irreps.

8d:(x,y,z) $\rightarrow 6 \times Z1(2) \oplus 6 \times Z2(2)$

Choose the representation(s)

irreps: $\Box Z1(2) \Box Z2(2)$

(In parentheses, the dimensions of the irreducible representations of the little group of k)

Submit

Example 2: Parent space group *Pnma* (i)

Space group: (No. 62) Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):

Z:(0,0,1/2)

Descomposition of the mechanical representation(s) into irreps.

8d:(x,y,z) $\rightarrow 6 \times Z1(2) \oplus 6 \times Z2(2)$

Choose the representation(s)

irreps: **∠**Z1(2) **∠**Z2(2)

(In parentheses, the dimensions of the irreducible representations of the little group of k)

Submit

Example 2: Parent space group *Pnma* (i)

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

List of subgroups compatible which have as primary irreps all the irreps given

More options

Get the subgroup-graph

Subgroups

The program *Subgroups* provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

 Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

 Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wave-vectors stars.

 The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be included.

 When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff positions of the atoms and/or a set of irreducible representations.

Tutorial_SUBGROUPS: download

See the Help for details.

Space group:	(No. 62)
Set of chosen m	odulation wave-vectors
k ₁ =(0,0,1/2)	
Include the subgroups compatible wit	th intermediate cells.
(It is not applied when only the maximal	subgroups are calculated)
Chosen representations	
Z:(0,0,1/2)	Z1(2)
Optional: possible lin	nitations of the subgroup list
(Check only one option on the	left and the specific value on the right)
(Check only one option on the I	left and the specific value on the right)
Event space group to consider	choose it
 Lowest point group to consider 	v
$^{\bigcirc}$ Lowest crystal system to consider	v
\odot Only maximal subgroups	
Optional: further limitations consider	ring physical properties of the point groups
Only centrosymmetric / non-centrosymmetric / non-centrosymmet	ymmetric groups all ~
Only polar / non-polar groups	all 🗸
Only proper ferroelastic phase trans This action is increased by a set of the s	itions
selection of representations)	
List of subgroups	• Graph of subgroups
	Submit

N	Group Symbol		Trans	forma	ation	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pmc</i> 2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	<i>P</i> 2 ₁ / <i>m</i> (No. 11)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
3	<i>Pm</i> (No. 6)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps

The list of possible symmetries is now reduced to three

The other three possible symmetries correspond to the other possible irreps Z2

Example 2: Parent space group *Pnma* (i)

N	Group Symbol		Tra	ansfo	orma	tion	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pca</i> 2 ₁ (No. 29)	(0 0 -2	0 1 0	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	<i>P</i> 2 ₁ / <i>c</i> (No. 14)		(1 0 0	0 1 0	0 0 2	0 0 0	4=2x2	Conjugacy Class	Get irreps
3	<i>Pc</i> (No. 7)		(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps

Space group: (No. 62) Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):

Z:(0,0,1/2)

Descomposition of the mechanical representation(s) into irreps.

8d:(x,y,z) $\rightarrow 6 \times Z1(2) \oplus 6 \times Z2(2)$

Choose the representation(s)

irreps: □ Z1(2) Z2(2)

(In parentheses, the dimensions of the irreducible representations of the little group of k)

Submit

Example 2: Parent space group *Pnma* (j)

Space group: (No. 62) Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):

Z:(0,0,1/2)

Descomposition of the mechanical representation(s) into irreps.

8d:(x,y,z) $\rightarrow 6 \times Z1(2) \oplus 6 \times Z2(2)$

Choose the representation(s)

irreps: Z1(2) Z2(2)

(In parentheses, the dimensions of the irreducible representations of the little group of k)

Submit

Example 2: Parent space group Pnma (j)

Input data

Subgroups of the space group :	<i>Pnma</i> (N. 62)
Lowest space group to consider:	<i>P</i> 1 (N. 1)
Modulation wave-vectors	(0,0,1/2)
Irreducible representations	
Z:(0,0,1/2)	Z1,Z2

List of subgroups compatible which have as primary irreps all the irreps given

Get the subgroup-graph

More options

N	Group Symbol		Fransf	orma	ation	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pc</i> (No. 7)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0\\ 0\\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
2	<i>P</i> 2 ₁ (No. 4)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
3	<i>P</i> 2 ₁ (No. 4)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
4	<i>P</i> 1 (No. 2)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
5	<i>P</i> 1 (No. 1)	(1 0 0	0 1 0	0 0 2	0 0 0	16=2x8	Conjugacy Class	Get irreps

The list is reduced to 5 subgroups that were not listed when choosing separately Z1 and Z2 as single active irreps

Example 2: Parent space group *Pnma* (j)

List of subgroups compatible which have as primary irreps some of the given irreps

Get the subgroup-graph

More options

N	Group Symbol	т	ransf	orma	tion	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Pca</i> 2 ₁ (No. 29)	(0 0 -2	0 1 0	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
2	<i>Pmc</i> 2 ₁ (No. 26)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
3	<i>P</i> 2 ₁ /c (No. 14)	(1 0 0	0 1 0	0 0 2	0 0 0	4=2x2	Conjugacy Class	Get irreps
4	<i>P</i> 2 ₁ / <i>m</i> (No. 11)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	4=2x2	Conjugacy Class	Get irreps
5	<i>Pc</i> (No. 7)	(0 -1 0	0 0 -2	1 0 0	$\begin{pmatrix} 0\\ 0\\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
6	<i>Pc</i> (No. 7)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
7	<i>Pm</i> (No. 6)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 1/4\\ 0 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
8	<i>P</i> 2 ₁ (No. 4)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\ 0\\ 1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
9	<i>P</i> 2 ₁ (No. 4)	(0 -1 0	1 0 0	0 0 2	$\begin{pmatrix} 0 \\ 1/4 \\ -1/4 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
10	<i>P</i> 1 (No. 2)	(1 0 0	0 1 0	0 0 2	$\begin{pmatrix} 0\\0\\1/2 \end{pmatrix}$	8=2x4	Conjugacy Class	Get irreps
11	<i>P</i> 1 (No. 1)	(1 0 0	0 1 0	0 0 2	0 0 0	16=2x8	Conjugacy Class	Get irreps

0	All irreps should be active to reach the subgroup.
۲	At least one irrep should be active to reach the subgroup

Submit

 $(a_P + b_P, -a_P + b_P, 2c_P; 0, 0, 0)$

All possible symmetries that can occur in a perovskite duet to unstable rigid-unit modes

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program *Subgroups* provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the groupsubgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

• Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

Enter the	e ser	ial nur	nber	of the	e spa	ace (group	:		choose it 221
				I	Intro	oduc	e the	e suj	perc	ell
			Alt	ernativ	vely g	jive tl	ne mo	dulati	on wa	vave-vectors
		a _s =		b _s =			c _s =			
	1	i	a [-1		а	0		а		
		+		+			+			The supercell is centred:
	1		D 1		b	0		b		
		+		+			+			
	0	(0		С	2		С		

98 subgroups	List of subgroups	○ Graph of subgroups
are possible		Submit

Space group $Pm\overline{3}m$ (No. 221) Check the type of Wyckoff positions of the atoms

Example 3: Perovskite (b)

Go back to the input page

Optional: refine further the subgroups of the output giving the Wyckoff	positions of
the atoms	
Give the Wyckoff positions	Wyckoff

221	-				
3.9	064	3.90	64 3.	9064	90. 90. 90.
3					
Sr	1	1a	0	0	0
Ti	1	1b	0.5	0.5	0.5
0	1	3c	0.5	0.5	0

The list is reduced to) 68
------------------------	------

	Multiplicity	Wyckoff Letter	Coordinates
	48	n	$\begin{array}{c} (X,Y,Z), (X,-Z,Y), (X,Z,-Y), (Z,Y,-X) \\ (-Z,Y,X), (-Y,X,Z), (Y,-X,Z), (X,-Y,-Z) \\ (-X,Y,-Z), (-X,-Y,Z), (Y,X,-Z), (-Y,-X,-Z) \\ (-X,Z,Y), (-X,-Z,-Y), (Z,-Y,X), (-Z,-Y,-X) \\ (Z,X,Y), (Y,-X,-Y), (Y,-Z,-X), (-Z,-X,Y) \\ (-Y,-Z,X), (Z,-X,-Y), (Y,-Z,-X), (-Z,-X,Y) \\ (-X,-Y,-Z), (-X,Z,-Y), (-Y,-Z,Y), (-X,Y,Z) \\ (Z,-Y,-X), (Y,-X,-Z), (-Y,-Z,Y), (-X,Y,Z) \\ (X,-Y,Z), (X,Y,-Z), (-Y,-X,Z), (Y,X,Z) \\ (X,-Z,-Y), (X,Z,Y), (-Y,-X,Z), (Z,Y,X) \\ (-Z,-X,-Y), (-Y,-Z,Y), (-Y,-X,Z), (Z,X,Y) \\ (-Z,-X,-Y), (-Y,-Z,Y), (Y,-Z,X), (Z,-X,Y) \\ (Y,-X,-X), (-Y,-X,Y), (-Y,-X,Y), (-X,-X) \\ (Y,-X,-Y), (-X,-Y), (-Y,-X,Y), (-X,-X) \\ (Y,-X,-Y), (-X,-Y), (-Y,-X,Y), (-X,-X) \\ (Y,-X,-Y), (-X,-Y), (-Y,-X), (-X,-X) \\ (Y,-X,-Y), (-X,-X), (-X,-X) \\ (Y,-X,-Y), (-X,-X), (-X,-X) \\ (Y,-X,-Y), (-X,-X), (-Y,-X), (-X,-X) \\ (Y,-X,-Y), (-X,-X), (-Y,-X), (-Y,-X), (-X,-X) \\ (Y,-X,-Y), (-X,-X), (-Y,-X), (-Y,-X), (-X,-Y) \\ (Y,-X,-Y), (-X,-Y), (-Y,-X), (-Y,-X), (-X,-Y) \\ (-X,-Y), (-X,-Y), (-Y,-X), (-Y,-X), (-X,-Y) \\ (-X,-Y), (-X,-Y), (-Y,-X), (-Y,-X), (-X,-Y) \\ (-X,-Y), (-X,-Y), (-Y,-X), (-X,-Y) \\ (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y) \\ (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y) \\ (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y) \\ (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y), (-X,-Y) \\ (-X,-Y), (-$
	24	m	$\begin{array}{l} (\chi,\chi,Z), (\chi,-Z,\chi), (\chi,Z,-\chi), (Z,\chi,-\chi)\\ (-Z,\chi,\chi), (-\chi,\chi,Z), (\chi,-\chi,Z), (\chi,-\chi,Z)\\ (-\chi,\chi,-Z), (-\chi,-\chi,Z), (\chi,-\chi,Z), (\chi,-\chi,-Z)\\ (-\chi,\chi,-Z), (-\chi,-\chi,Z), (\chi,\chi,-\chi), (-\chi,-\chi,-\chi)\\ (-\chi,\chi,\chi), (-\chi,-Z,-\chi), (-\chi,-\chi), (-\chi,-\chi)\\ (-\chi,-Z,\chi), (Z,-\chi,-\chi), (-\chi,-\chi), (-\chi,-\chi)\\ (-\chi,-Z,\chi), (Z,-\chi,-\chi), (-\chi,-\chi), (-\chi,-\chi)\\ (-\chi,-Z,\chi), (-\chi,-\chi), (-\chi,-\chi), (-\chi,-\chi)\\ (-\chi,-Z,\chi), (-\chi,-\chi), (-\chi,-\chi), (-\chi,-\chi)\\ (-\chi,-\chi)\\ (-\chi,-\chi), (-\chi,-\chi)\\ (-\chi)\\ (-\chi,-\chi)\\ (-\chi)\\ (-\chi,-\chi)\\ (-\chi)\\ (-\chi)\\ (-\chi)\\ (-\chi)\\ (-\chi)\\ (-\chi)\\ (-\chi)\\ (-\chi)\\ (-\chi)\\ $
	24	I	(1/2, y, z), (1/2, -z, y), (1/2, z, -y), (z, y, 1/2) (-z, y, 1/2), (-y, 1/2, z), (y, 1/2, z), (1/2, -y, -z) (1/2, y, -z), (1/2, -y, z), (y, 1/2, -z), (-y, 1/2, -z) (1/2, z, y), (1/2, -z, -y), (z, -y, 1/2), (-z, -1/2), (-z, 1/2), (-y, -1/2), (-z, 1/2), (-y, -z, 1/2), (-z, 1/2
	24	k	$\begin{array}{c} (0,y,z), (0,-z,y), (0,z,-y), (z,y,0) \\ (-z,y,0), (-y,0,z), (y,0,z), (0,-y,-z) \\ (0,y,-z), (0,-y,2), (y,0,-z), (y,0,-z) \\ (0,z,y), (0,-z,-y), (z,-y,0), (-z,-y,0) \\ (z,0,y), (y,z,0), (-y,z,0), (-z,0,y) \\ (-y,-z,0), (z,0,-y), (y,-z,0), (-z,0,-y) \end{array}$
	12	j	(1/2,y,y),(1/2,-y,y),(1/2,y,-y),(y,y,1/2) (-y,y,1/2),(-y,1/2,y),(y,1/2,y),(1/2,-y,-y) (y,1/2,-y),(-y,1/2,-y),(y,-y,1/2),(-y,-y,1/2)
	12	i	$\begin{array}{c} (0,y,y), (0,-y,y), (0,y,-y), (y,y,0) \\ (-y,y,0), (-y,0,y), (y,0,y), (0,-y,-y) \\ (y,0,-y), (-y,0,-y), (y,-y,0), (-y,-y,0) \end{array}$
	12	h	$\begin{array}{l}(x,1/2,0),(x,0,1/2),(0,1/2,-x),(0,1/2,x)\\(1/2,x,0),(1/2,-x,0),(-x,1/2,0),(-x,0,1/2)\\(0,x,1/2),(1/2,0,x),(1/2,0,-x),(0,-x,1/2)\end{array}$
	8	g	(x,x,x),(x,-x,x),(x,x,-x),(-x,x,x) (x,-x,-x),(-x,x,-x),(-x,-x,x),(-x,-x,-x)
	6	f	(x,1/2,1/2),(1/2,1/2,-x),(1/2,1/2,x) (1/2,x,1/2),(1/2,-x,1/2),(-x,1/2,1/2)
	6	е	(x,0,0),(0,0,-x),(0,0,x) (0,x,0),(0,-x,0),(-x,0,0)
•	3	d	(1/2,0,0),(0,0,1/2),(0,1/2,0)
	3	с	(0,1/2,1/2),(1/2,1/2,0),(1/2,0,1/2)
✓	1	b	(1/2,1/2,1/2)
✓	1	а	(0,0,0)

Do not consider subgroups attainable only through strain-like distortions

Submit

choose it

221

1

~

~

Enter the serial number of the space group:

Include the subgroups compatible with intermediate cells.
 (It is not applied when only the maximal subgroups are calculated)

□ Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter).

Wyckoff positions of the atoms 3d:(1/2,0,0) 1b:(1/2,1/2,1/2) 1a:(0,0,0)

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right) (Check only one option on the left and the specific value on the right)

 $^{\bigcirc}$ Lowest space group to consider

 $\, \odot \,$ Lowest point group to consider

 $\,\odot\,$ Lowest crystal system to consider

Only maximal subgroups

List of possible subgroups assuming the given wyckoff positions

Get the subgroup-graph

More options

N	Group Symbol	Trai	nsf	orma	ation	matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	<i>Fm</i> 3c (No. 226)	(2 0 0	0 2 0	0 0 2	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	2=2x1	Conjugacy Class	Get irreps
2	<i>Fm</i> 3c (No. 226)	(2 0 0	0 2 0	0 0 2	$\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$	2=2x1	Conjugacy Class	Get irreps
3	Fm3m (No. 225)	(2 0 0	0 2 0	0 0 2	$\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$	2=2x1	Conjugacy Class	Get irreps
4	Fm3m (No. 225)	(2 0 0	0 2 0	0 0 2	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	2=2x1	Conjugacy Class	Get irreps
5	<i>I4/mcm</i> (No. 140)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	6=2x3	Conjugacy Class	Get irreps
6	<i>I4/mcm</i> (No. 140)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$	6=2x3	Conjugacy Class	Get irreps
7	<i>l4/mmm</i> (No. 139)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 0\\ 1/2\\ 0 \end{pmatrix}$	6=2x3	Conjugacy Class	Get irreps
8	<i>l4/mmm</i> (No. 139)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix}$	6=2x3	Conjugacy Class	Get irreps
9	<i>lmma</i> (No. 74)	(0 0 2	-1 1 0	-1 -1 0	$\begin{pmatrix} 0\\ 1/2\\ 0 \end{pmatrix}$	12=2x6	Conjugacy Class	Get irreps
10	<i>lmma</i> (No. 74)	(0 0 2	1 1 0	-1 1 0	$\begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix}$	12=2x6	Conjugacy Class	Get irreps

Subgroups that belong to the same conjugacy class, limited to those compatible with the given supercell or the supercell determined by the given wave vector(s).

N	Group Symbol	Transformation matrix	Group-Subgroup index	Symmetry operations	Set of subgroups*	irreps
5 1	14/mcm (No. 140)	$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}$	6=2x3	Plain text format	List of subgroups	Get irreps
0.1			0-270	Matrix form	Graph of subgroups	
5.2	14/mcm (No. 140)	$\begin{pmatrix} 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$	6=2x3	Plain text format	List of subgroups	Get irrens
0.2			0-273	Matrix form	Graph of subgroups	Cot mops
53	14/mcm (No. 140)	$\begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{pmatrix}$	6=2x3	Plain text format	List of subgroups	Get irrens
5.5	14///C// (NO. 140)		0-283	Matrix form	Graph of subgroups	Got meps

* List or graph of subgroups that are related with the chosen group through group-subgroup relation.

Group→subgroup	Т	ransfo	orma	ation	matrix
<i>Pm</i> 3 <i>m</i> (N. 221)→ <i>I</i> 4/ <i>mcm</i> (N. 140)	(1 -1 0	1 1 0	0 0 2	° ° °

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps	
GM: (0.0.0)	GM ₁ ⁺ : (a)	<i>Pm</i> 3 <i>m</i> (No. 221) a,b,c;0,0,0	matrices of the irreps	
Givi. (0,0,0)	GM ₃ ⁺ : (a,0)	<i>P4/mmm</i> (No. 123) a,b,c;0,0,0		
R: (1/2,1/2,1/2)	R ₄ ⁺ : (a,0,0)	<i>I4/mcm</i> (No. 140) a-b,a+b,2c;0,0,0	matrices of the irreps	

Group→subgroup	Tr	ansf	orm	ation	matrix
<i>Pm</i> 3 <i>m</i> (N. 221)→ <i>I</i> 4/ <i>mcm</i> (N. 140)	(1 0 1	-1 0 1	0 -2 0	° ° °

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps	
GM: (0.0.0)	GM ₁ ⁺ : (a)	<i>Pm</i> 3 <i>m</i> (No. 221) a,b,c;0,0,0	matricos of the irrops	
Givi. (0,0,0)	GM ₃ ⁺ : (a,-(√3 a))	<i>P</i> 4/ <i>mmm</i> (No. 123) a,-c,b;0,0,0	mances of the meps	
R: (1/2,1/2,1/2)	R ₄ ⁺ : (0,0,a)	<i>I4/mcm</i> (No. 140) a+c,-a+c,-2b;0,0,0	matrices of the irreps	

Group→subgroup	Tr	ansfo	orma	tion	matrix
<i>Pm</i> 3 <i>m</i> (N. 221)→ <i>I</i> 4/ <i>mcm</i> (N. 140)	(0 1 -1	0 1 1	2 0 0	$\left(\begin{smallmatrix} 0\\0\\0\\0\end{smallmatrix}\right)$

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps	
CM: (0.0.0)	GM1 ⁺ : (a)	<i>Pm</i> 3 <i>m</i> (No. 221) a,b,c;0,0,0	matrices of the irreps	
GWI. (0,0,0)	GM ₃ ⁺ : (a,√3 a)	P4/mmm (No. 123) -c,b,a;0,0,0		
R: (1/2,1/2,1/2)	R ₄ ⁺ : (0,a,0)	/4/ <i>mcm</i> (No. 140) b-c,b+c,2a;0,0,0	matrices of the irreps	

The direction changed for the R_4^+

choose it 221 Introduce the supercell Alternatively give the modulation wave-vectors $a_s^=$ $b_s^=$ $c_s^=$ 1 a a + + + 1 b $1 \checkmark$ + + + 0 c $0 < c$	Go back to the input page									
Introduce the supercell Alternatively give the modulation wave-vectors $a_s = b_s = c_s =$ 1 a -1 a -1 a -1 b -1 b -1 b -1 b -1 b -1 -1	Enter the serial number of the space group:									
	Alterr a _s = b 1 a -1 + 1 b 1 + 0 c 0	Introduce the supercell matively give the modulation wave-vector $b_s = c_s =$ a 0 a + + The b 0 b + + c 2 c	e supercell is centred:							

\square	6	t	(1/2,x,1/2),(1/2,-x,1/2),(-x,1/2,1/2)
	6	е	(x,0,0),(0,0,-x),(0,0,x) (0,x,0),(0,-x,0),(-x,0,0)
\checkmark	3	d	(1/2,0,0),(0,0,1/2),(0,1/2,0)
\Box	3	С	(0,1/2,1/2),(1/2,1/2,0),(1/2,0,1/2)
\checkmark	1	b	(1/2,1/2,1/2)
\checkmark	1	a	(0,0,0)

Do not consider subgroups attainable only through strain-like distortions

Submit

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program *Subgroups* provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

 Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

 Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wavevectors stars.

 The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be Enter the serial number of the space group:

choose it 221

Introduce the wave vector(s)							
(Give the components of the wave vectors in a fractional form, n/m)							
k_{1x} 1/2 k_{1y} 1/2 k_{1z} 1/2							
Show the independent vectors of the star							
Choose the whole star of the propagation vector							
More wave-vectors needed							

Include the subgroups compatible with intermediate cells.

(It is not applied when only the maximal subgroups are calculated)

Optional: refine further the subgroups of the output giving the Wyckoff positions of the ator	ns
Give the Wyckoff positions	Wyckoff

Go back to the input page

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups	Space group:	<i>Pm</i> 3 <i>m</i> (No. 221)
The program <i>Subgroups</i> provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional	Set of chosen k ₁ =(1/2,1/2,1/2)	modulation wave-vectors
information about the classes or subgroups is also given. Other alternatives for the input of the program:	□ Include the subgroups compatible with interr (It is not applied when only the maximal subgrou	mediate cells. ups are calculated)
 Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class. Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wavevectors stars. The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be included. When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff participation. 	Wyckoff positions of the atoms 3d:(1/2,0,0) 1b:(1/2,1/2,1/2) 1a:(0,0,0) Optional: Show only subgroups that can be to parameter). Optional: refine further the sub	the result of a Landau-type transition (single irrep order groups of the output giving a set of irreps
positions of the atoms and/or a set of irreducible representations.	Choose the irreps	Representations
Tutorial_SUBGROUPS: download See the Help for details.	Optional: possible I (Check only one option on the (Check only one option on the	limitations of the subgroup list he left and the specific value on the right) e left and the specific value on the right)
	Lowest space group to consider	choose it 1
	 Lowest point group to consider 	\
	 Lowest crystal system to consider 	v
	 Only maximal subgroups 	

Space group: $Pm\overline{3}m$ (No. 221) Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Non bolded irreps are incompatible with the given Wyckoff positions **Bolded irreps** are compatible with at least one given Wyckoff position Red colored irreps are compatible with all the Wyckoff positions given

Possible irreducible representations

Wave-vectors of the	e star (1	vector)	:					
R:(1/2,1/2,1/2)								
Descomposition of	the mec	hanica	l represer	ntation(s) i	into irreps.			
3d:(1/2,0,0)	\rightarrow	1× R1	+(1) 1>	⟨R3+(2) ⊕	1×R4+(3) ⊕ 1×R5+	-(3)		
1b:(1/2,1/2,1/2)	\rightarrow	1× R 5	5+(3)					
1a:(0,0,0)	\rightarrow	1× R4	-(3)					
Choose the represe	entation(s)						
irreps:		1+(1)	$R1_{-}(1)$	$R^{2+(1)}$	R2_(1) R3+(2)	R3-(2) R4+(3) R	$4_{-}(3) \square R5_{+}(3)$	R5-(

(In parentheses, the dimensions of the irreducible representations of the little group of k)

0				
- 55		h	m	11
	u	~		н.

Only 4 of the 10 possible irreps are relevant

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

 Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

 Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wavevectors stars.

 The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be included.

 When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff positions of the atoms and/or a set of irreducible representations.

Tutorial_SUBGROUPS: download

See the Help for details.

Space group:

Set of chosen modulation wave-vectors

*Pm*3*m* (No. 221)

no 🗸

k₁=(1/2,1/2,1/2)

Include the subgroups compatible with intermediate cells.

(It is not applied when only the maximal subgroups are calculated)

Wyckoff positions of the atoms

3d:(1/2,0,0) 1b:(1/2,1/2,1/2)

1a:(0,0,0)

Chosen representations

R:(1/2,1/2,1/2)

R4+(3)

 Only proper ferroelastic phase transitions (This option is incompatible with the previous two options and with the selection of representations)

List of subgroups

O Graph of subgroups

List of possible subgroups assuming the given wyckoff positions and that have as primary irreps all the irreps given

More options

Get the subgroup-graph

N	Group Symbol	Transformation matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	R3c (No. 167)	$\left(\begin{array}{rrrrr} -1 & 0 & 2 & & 0 \\ 0 & -1 & -2 & & 0 \\ 1 & -1 & 2 & & 0 \end{array}\right)$	8=2x4	Conjugacy Class	Get irreps
2	<i>I4/mcm</i> (No. 140)	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6=2x3	Conjugacy Class	Get irreps
3	<i>Imma</i> (No. 74)	$\left(\begin{array}{rrrrr} 0 & 1 & -1 & 1/2 \\ 0 & 1 & 1 & 0 \\ 2 & 0 & 0 & 1/2 \end{array}\right)$	12=2x6	Conjugacy Class	Get irreps
4	C2/c (No. 15)	$\left(\begin{array}{rrrrr} 1 & 1 & -1 & 1/2 \\ -2 & 0 & 0 & 1/2 \\ -1 & 1 & 1 & 0 \end{array}\right)$	24=2x12	Conjugacy Class	Get irreps
5	C2/m (No. 12)	$\left(\begin{array}{rrrrr} 2 & 0 & -1 & & 0 \\ 0 & 0 & 1 & & 1/2 \\ 0 & -2 & 0 & & 1/2 \end{array}\right)$	24=2x12	Conjugacy Class	Get irreps
6	<i>P</i> 1 (No. 2)	$\left(\begin{array}{rrrrr} 1 & -1 & 0 & & 0 \\ 0 & 1 & 1 & & 0 \\ -1 & 0 & 1 & & 0 \end{array}\right)$	48=2x24	Conjugacy Class	Get irreps

All possible distinct space group symmetries (subgroups of the parent $Pm\overline{3}m$) that can result from an order parameter with R4+ symmetry.

All possible symmetries that a perovskite can acquire as the result of the freezing of some combinations of the three R4+ distortions

SUBGROUPS can be combined with the program TRANSTRU to create an initial structural model of a distorted structure under one or more of the symmetries obtained with SUBGROUPS.

Create the CIF file for the C2/c structure observed in LaCoO₃.

N	Group Symbol	Tra	ansf	orm	atior	n matrix	Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	R3c (No. 167)	(-1 0 1	0 -1 -1	2 -2 2	0 0 0	8=2x4	Conjugacy Class	Get irreps
2	<i>I4/mcm</i> (No. 140)	(1 0 1	-1 0 1	0 -2 0	0 0 0	6=2x3	Conjugacy Class	Get irreps
3	<i>Imma</i> (No. 74)	(0 0 2	1 1 0	-1 1 0	$\begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix}$	12=2x6	Conjugacy Class	Get irreps
4	C2/c (No. 15)	(1 -2 -1	1 0 1	-1 0 1	$\begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$	24=2x12	Conjugacy Class	Get irreps
5	C2/m (No. 12)	(2 0 0	0 0 -2	-1 1 0	$\begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}$	24=2x12	Conjugacy Class	Get irreps
6	<i>P</i> 1 (No. 2)	(1 0 -1	-1 1 0	0 1 1	0 0 0	48=2x24	Conjugacy Class	Get irreps

https://www.cryst.ehu.es/cryst/transtru.html

Transform Structure

Transform Structure

TRANSTRU can transform a structure in two ways:

- To a lower symmetry space group. The transformed structure is given in the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.
- With an arbitrary matrix. The structure, including the cell parameters and the atoms in the unit cell, is transformed with an arbitrary matrix introduced by the user.

Only the default choice for the conventional setting of the space groups is used.

Structure Data [in CIF format]	Brows HINT:	Browse No file selected. HINT: [The option for a given filename is preferential]								
	221									
	3.906	3.9064 3.9064 3.9064 90. 90. 90.								
	3	3								
	Co	1	1a 1h	0.000000	0.000000	0.000000 0 500000	- 1			
	0	1	3c	0.500000	0.500000	0.000000				
High Symmetry Structure										
	Trans	Transform structure to a subgroup basis 🧿								
	Trans	sform st	ructure w	ith an arbitrary	matrix 🔾					

Show

Transform Structure

Transform Structure

TRANSTRU transforms the structure to the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.

	221 3.9064	3.9064 3	.9064 90	90. 90.		
	La	1	1a 1b	0.000000	0.000000	0.00000
	0	1	3c	0.500000	0.500000	0.000000
Structure						
						1.
Low symmetry Space Group <i>IT</i> A number	15					
Transformation Matrix:						
		\bigcap	Lin	iear part		Origin Shift
		1	-1	-1	7	0
In matrix form:		2	0	0		1/2
		-1	-1	1		1/2
		C				
			(Show		

Transform structure

Transformation matrix: a+2b-c,-a-c+1/2,-a+c+1/2

High symmetry structure

221 3.9064 3.9064 3.9064 90. 90. 90. 3 La 1 1a 0.000000 0.000000 0.000000 Co 1 1b 0.500000 0.500000 0.500000 0 1 3c 0.500000 0.500000 0.000000

Visualize this structure CIF File Cartesian Coordinates

Low symmetry structure

015 9.5686 5	86 5.52	4484 5.52	24484 90.000000	125.264397 90.0	00000
La	1	4c	0.750000	0.250000	0.500000
Co	1	4e	0.000000	0.750000	0.750000
0	1	4a	0.00000	0.00000	0.500000
0	1 2	4b	0.00000	0.500000	0.000000
0	1_3	4d	0.250000	0.250000	0.500000
Visualize this structure CIF File Cartesian Coordinates					

You can download directly the CIF file with the atomic positions corresponding to the ideal perovskite structure