Crystal-Structure Tools

Crystallography Online: Workshop on the use and applications of the structural and magnetic tools of the Bilbao Crystallographic Server

TRANSTRU

EQUIVSTRU

POSSIBLE SYMMETRIES OF DISTORTED STRUCTURES

billbao crystallographic server

Group-Subgroup Relations of Space Groups

```
SUBGROUPGRAPH Lattice of Maximal Subgroups
HERMANN Distribution of subgroups in conjugated classes
COSETS
WYCKSPLIT
MINSUP
SUPERGROUPS
CELLSUB
CELLSUPER
NONCHAR
COMMONSUBS
COMMONSUPER
INDEX
SUBGROUPS
Coset decomposition for a group-subgroup pair
The splitting of the Wyckoff Positions
Minimal Supergroups of Space Groups
Supergroups of Space Groups
List of subgroups for a given k-index.
List of supergroups for a given k-index.
Non Characteristic orbits.
Common Subgroups of Space Groups
Common Supergroups of Two Space Groups
Index of a group subgroup pair
Subgroups of a space group consistent with some given supercell, propagation vector(s) or irreducible representation(s)
```

Determine and explore online all possible symmetries that can result from the distortion of a parent structure of higher symmetry

SUBGROUPS: https://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1 cell.pl

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Further limitations considering physical properties of the point groups

- Only centrosymmetric/non centrosymmetric groups
- Only polar/non polar groups
- Only proper ferroelastic phase transitions

- List of subgroups

O Graph of subgroups

Other alternatives to filtered the results of the program

Example 1: Fullerene-cubane crystal

High-temperature phase

Nature Mat. 4, 764 (2005)

Low-temperature phase

Disordered fullerenes molecules $4 a(0,0,0)$
Disordered cubane molecules $4 b(1 / 2,1 / 2,1 / 2)$

Orthorhombic structure

$$
a_{o} \approx b_{o} \approx \frac{a_{c}}{\sqrt{2}} ; c_{o} \approx 2 a_{c}
$$

J. Phys. Chem. B 113, 2042 (2009)

Restrict the symmetry of the low-symmetry phase to a minimal set of most probable space groups

Example 1: Fullerene-cubane crystal (a)

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the groupsubgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

- Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.
- Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial

Enter the serial number of the space group:
choose it
225

[^0]O Graph of subgroups

Example 1: Fullerene-cubane crystal (a)

List of subgroups that fulfill the given conditions
Get the subgroup-graph

99 subgroups

Input data
Subgroups of the space group
$F m \overline{3} m$ (N. 225)
P1 (N. 1)
(1/2,-1/2,0),(1/2,1/2,0),(0,0,2) No
Supercell given by: Centred supercell:

90	Pm (No. 6)		$1 / 2$ $1 / 2$ 0	$\begin{array}{r}0 \\ 0 \\ -2 \\ \hline\end{array}$	$-1 / 2$ $1 / 2$ 0	(re $\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right) \mid$	$96=4 \times 24$	Conjugacy Class	Get irreps
91	C2 (No. 5)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{r}1 / 4 \\ 0 \\ 1 / 4\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
92	C2 (No. 5)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
93	$P 2{ }_{1}$ (No. 4)		$\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}$	$1 / 2$ $1 / 2$ 0	0 0 2	$\left.\begin{array}{r\|r\|}-1 / 8 \\ 1 / 8 \\ 1 / 4\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
94	$P 2_{1}($ No. 4)		$1 / 2$ $1 / 2$ 0	0 0 -2	$-1 / 2$ $1 / 2$ 0	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
95	P2 (No. 3)		$\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0 & \end{array}$	$1 / 2$ $1 / 2$ 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
96	P2 (No. 3)		$1 / 2$ $1 / 2$ 0	0 0 -2	$-1 / 2$ $1 / 2$ 0	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
97	$P \overline{1}$ (No. 2)		$\begin{array}{rrr}1 / 2 & -1 / 2 \\ 1 / 2 & 1 \\ 0\end{array}$	$1 / 2$ $1 / 2$ 0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
98	$P \overline{1}($ No. 2)		$\begin{array}{rrr}1 / 2 & -1 / 2 \\ 1 / 2 & 1 \\ 0\end{array}$	$1 / 2$ $1 / 2$ 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$96=4 \times 24$	Conjugacy Class	Get irreps
99	P1 (No. 1)		$\begin{array}{rrr}1 / 2 & -1 / 2 \\ 1 / 2 & 1 \\ 0\end{array}$	$1 / 2$ $1 / 2$ 0	0 0 2	0 0	$192=4 \times 48$	Conjugacy Class	Get irreps

Example 1: Fullerene-cubane crystal (a)

60	$P 2_{1} 212$ (No. 18)	$\left(\begin{array}{r}1 / 2 \\ -1 / 2 \\ 0\end{array}\right.$		0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ -1 / 4\end{array}\right)$	$48=4 \times 12$	Conjugacy Class	Get irreps
61	P222 ${ }_{1}$ (No. 17)	$\left(\begin{array}{l}1 / 2 \\ -1 / 2\end{array}\right.$			re $\left.\begin{array}{r}0 \\ 1 / 2\end{array}\right)$	$48=4 \times 12$	Conjugacy Class	Get irreps
62	P222 (No. 16)	$\left(\begin{array}{r}1 / 2 \\ -1 / 2 \\ 0\end{array}\right.$			$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$48=4 \times 12$	Coniugacy Class	Get irreps

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right)
(Check only one option on the left and the specific value on the right)

O Lowest space group to consider	choose it
Lowest point group to consider	$------\quad$--
Lowest crystal system to consider	
Only maximal subgroups	

The list of maximal subgroups is reduced from 99 to 62

Most of them can be discarded symmetry higher than orthorhombic

Orthorhombic point groups: $222, \mathrm{~mm}$ or mmm

Example 1: Fullerene-cubane crystal (b)

List of subgroups that fulfill the given conditions

N	Group Symbol	Transformation matrix			Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	$\mathrm{PH}_{2} / \mathrm{ncm}$ (No. 138)	$\left(\begin{array}{rr}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1 / 2\end{array}\right.$	$\begin{array}{rl}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}1 / 4 \\ 0 \\ -1 / 4\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
2	$\mathrm{PA}_{2} / \mathrm{nmc}$ (No. 137)	$\left(\begin{array}{rl}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1 / 2\end{array}\right.$	$\begin{array}{rl}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ \hline-1 / 4\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
3	$\mathrm{P}_{2} / \mathrm{mcm}$ (No..132)	$\left(\begin{array}{rr}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1 / 2\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
4	P42/mmc ((No. 131)	$\left(\begin{array}{rr}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1\end{array}\right.$	$\begin{array}{rl}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
5	P4/ncc (No. 130)	$\left(\begin{array}{rr}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1\end{array}\right.$	$\begin{array}{rl}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ 0 \\ -1 / 4\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
6	P4/nmm (No. 129)	$\left(\begin{array}{rr}1 / 2 \\ -1 / 2 & 1 \\ 0 & 1\end{array}\right.$	$\begin{array}{rl}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ 0 \\ -1 / 4\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
7	P4/moc (No. 124)	$\left(\begin{array}{rr}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1\end{array}\right.$	$\begin{array}{rl}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
8	P4/mmm (No. 123)	$\left(\begin{array}{rrr}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1\end{array}\right.$	$\begin{array}{rl}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
9	Ccce (No.68)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ 0 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
10	Cmme (No.67)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
11	Ccom (No.66)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	24=4x6	Conjugacy Class	Get irreps
12	Cmmm (No.65)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
13	Cmoe (No.64)	$\left(\begin{array}{r}0 \\ -1 \\ 0\end{array}\right.$	$\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ 0 \\ -1 / 4\end{array}\right)$	24=4x6	Conjugacy Class	Get irrops
14	Cmam (No.63)	$\left(\begin{array}{r}0 \\ -1 \\ 0\end{array}\right.$	1 0 0 0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
15	Pnma (No.62)	$\left(\begin{array}{rr}0 & 1 / 2 \\ 0 & 1 / 2 \\ -2 & \end{array}\right.$	(rr $\begin{array}{rr}1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ 0 & 0\end{array}$	($\left.\begin{array}{r}1 / 4 \\ -1 / 4\end{array}\right)$	24=4x6	Conjugacy Class	Get irrops
16	Pmmn (No. 59)	$\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 0 & \end{array}\right.$	$\begin{array}{rl}-1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ -1 / 4\end{array}\right)$	24=4x6	Conjugacy Class	Get irreps
17	Pcon (No. 56)	$\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 0 & \end{array}\right.$	$\begin{array}{rr}-1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{\|c}1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
18	Pmma (No. 51)	$\left(\begin{array}{rr}0 & 1 \\ 0 & 1 \\ -2 & \end{array}\right.$	crer$1 / 2$ $1 / 2$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irrops
19	Pcom (No. 49)	$\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 0\end{array}\right.$	$\begin{array}{rl}-1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
20	Pmmm (No. 47)	$\left(\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0 & 1\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	24=4x6	Conjugacy Class	Get irreps

Example 1: Fullerene-cubane crystal (b)

Input data

Subgroups of the space group : Lowest point group to consider: Supercell given by: Centred supercell:

$F m \overline{3} m$ (N. 225)
mmm (N. 8)
1/2,-1/2,0),(1/2,1/2,0),(0,0,2)

Graph of subgroups that fulfill the given conditions

Get the subgraph between the group (or conjugacy class) with label \qquad and the group (or conjugacy class) with label \qquad according to these rules Get graph

Graph showing the group-subgroup hierarchy of these 20 subgroups

Example 1: Fullerene-cubane crystal (b)

N	Group Symbol	Transformation matrix			$\begin{gathered} \text { Group-Subgroup } \\ \text { index } \end{gathered}$	Other members of the Conjugacy Class	irreps
1	P42/ncm (No. 138)	$\left(\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	1/4 0	$12=4 \times 3$	Conjugacy Class	Get irreps
2	P4 ${ }_{2} / \mathrm{nmc}$ (No. 137)	$\left(\begin{array}{rrr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0 & \end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	1/4 ${ }^{1 / 4}$ (1/4	$12=4 \times 3$	Conjugacy Class	Get irreps
3	$\mathrm{P} 4_{2} / \mathrm{mcm}$ (No .132)	$\left(\begin{array}{rrr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
4	P4 ${ }_{2} / \mathrm{mmc}$ (No .131)	$\left(\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}\right.$	$1 / 2$ $1 / 2$ 0	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
5	P4/ncc (No. 130)	$\left(\begin{array}{rrr}1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 1\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	1/4 0	$12=4 \times 3$	Conjugacy Class	Get irreps
6	P4/nmm (No. 129)	$\left(\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ 0 \\ -1 / 4\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
7	P4/mcc (No. 124)	$\left(\begin{array}{rll}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}\right.$	$1 / 2$ $1 / 2$ 0	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
8	P4/mmm (No. 123)	$\left(\begin{array}{rll}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}\right.$	$1 / 2$ 0 $1 / 2$ 0 0 2	$\left.\begin{array}{r} 0 \\ 0 \\ 1 / 2 \end{array}\right)$	$12=4 \times 3$	Conjugacy Class	Get irreps
9	Ccce (No.68)	1 0 0	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
10	Cmme (No.67)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{c}1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
11	Ccom (No. 66)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 0 1 0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
12	Cmmm (No.65)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
13	Cmce (No. 64)	($\begin{array}{r}0 \\ -1 \\ 0\end{array}$	$\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 2\end{array}$		$24=4 \times 6$	Conjugacy Class	Get irreps
14	Cmcm (No.63)	$\left(\begin{array}{r}0 \\ -1 \\ 0\end{array}\right.$	$\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
15	Pnma (No. 62)	($\begin{array}{rrr}0 & 1 / 2 \\ 0 & 1 \\ -2 & 1\end{array}$	$\begin{array}{rrr}1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ 0 & 0\end{array}$	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
16	Pmmn (No. 59)	$\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 0 & \end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
17	Pcon (No. 56)	$\left(\begin{array}{rrr}1 / 2 & -1 / 2 \\ 1 / 2 & 1 \\ 0\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
18	Pmma (No. 51)	$\left(\begin{array}{rrr}0 & 1 / 2 \\ 0 & 1 \\ -2 & \end{array}\right.$	$\begin{array}{rrr}1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ 0 & 0\end{array}$	ren $\left.\begin{array}{r}0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
19	Pcom (No. 49)	$\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ \text { 2 }\end{array} 1\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	re $\left.\begin{array}{r}0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
20	Pmmm (No.47)	$\left(\begin{array}{rll}1 / 2 & 1 / 2 \\ -1 / 2 & 1 \\ 0\end{array}\right.$	$\begin{array}{rr}1 / 2 & 0 \\ 1 / 2 & 0 \\ 0 & 2\end{array}$	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps

Tetragonal subgroups

C centered orthorhombic

The unit cell of the LS-phase is known to primitive orthorhombic

6 possible symmetries

Example 1: Fullerene-cubane crystal (c)

15	Pnma (No.62)			$1 /$	1/2	$1 / 2$ $-1 / 2$ 0	($\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
16	Pmmn (No. 59)		1/2	${ }_{1}^{1 /}$	$1 / 2$ $1 / 2$ 0	0 0 2	($\left.\begin{array}{r}0 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Coniugacy Class	Get irreps
17	Pcon (No. 56)		$1 / 2$	$1 /$	$1 / 2$ $1 / 2$ 0	2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
18	Pmma (No. 51)		-2	$1 /$	$1 / 2$ $1 / 2$ 0	$1 / 2$ $-1 / 2$ 0	r $\left.\begin{array}{r}0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
19	Pcom (No. 49)		$1 / 2$ $1 / 2$	$1 /$	-1/2	0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
20	Pmmm (No. 47)		1/2	$1 /$	$1 / 2$ $1 / 2$ 0	0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	24=4x6	Conjugacy Class	Get irreps

The irreducible representations of the parent structure that are compatible with this specific symmetry for the distorted structure

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

Group \rightarrow subgroup	Transformation matrix
$F m \overline{3} m(\mathbf{N} .225) \rightarrow \operatorname{Pnma}(\mathrm{N} .62)$	$\left(\begin{array}{rrrr}0 \\ 0 & 1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & -1 / 2 & 1 / 4 \\ -2 & 0 & 0 & -1 / 4\end{array}\right)$

Representations and order parameters

The symmetry break
$F m \overline{3} m \rightarrow$ Pnma can be realized through a Landau type phase transition

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: $(0,0,0)$	GM_{1}^{+}: (a)	$\begin{gathered} \hline F m \overline{3} m(\text { No. 225) } \\ a, b, c ; 0,0,0 \end{gathered}$	
	$\mathrm{GM}_{3}{ }^{\text {a }}$ (a,0)	$\begin{gathered} 14 / \mathrm{mmm} \text { (No. 139) } \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2, \mathrm{c} ; 0,0,0 \end{gathered}$	matrices of the irreps
	$\mathrm{GM}_{5}{ }^{+}:(\mathrm{a}, 0,0)$	$\begin{gathered} \operatorname{Immm}(\text { No. 71) } \\ \mathrm{a} / 2+\mathrm{b} / 2,-1 / 2 \mathrm{a}+\mathrm{b} / 2, \mathrm{c} ; 0,0,0 \end{gathered}$	
DT: $(0,1 / 2,0)(1 / 2,0,0)(0,0,1 / 2)$	$D T_{5}:(0,0,0,0,0,0,0,0, a, 0,0, a)$	$\begin{gathered} \text { Pnma (No. 62) } \\ -2 \mathrm{c}, \mathrm{a} / 2+\mathrm{b} / 2, \mathrm{a} / 2-\mathrm{b} / 2 ; 0,1 / 4,-1 / 4 \end{gathered}$	matrices of the irreps
X: $(0,1,0)(1,0,0)(0,0,1)$	$\mathrm{X}_{2}{ }^{-}$($0,0, \mathrm{a}$)	$\begin{gathered} P 4_{2} / n m c(\text { No. 137 }) \\ a / 2-b / 2, a / 2+b / 2, c ; 0,1 / 4,1 / 4 \end{gathered}$	matrices of the irreps
	$X_{3}{ }^{-}:(0,0, a)$	$\begin{gathered} \text { P4/nmm (No. 129) } \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2, \mathrm{c} ; 1 / 4,0,1 / 4 \end{gathered}$	marices ofthe ireps

Example 1: Fullerene-cubane crystal (d)

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

| Group \rightarrow subgroup | Transformation matrix |
| :---: | :---: | :---: |
| Fm $\overline{3} m($ N. 225 $) \rightarrow$ Pnma (N. 62) | $\left(\begin{array}{rrrr} \\ & \left(\begin{array}{rrrr}1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & -1 / 2 & 1 / 4 \\ -2 & 0 & 0 & -1 / 4\end{array}\right) \\ \hline \hline\end{array}\right.$ |

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: $(0,0,0)$	$\mathrm{GM}_{1}{ }^{+}$: ${ }^{\text {a }}$	$\begin{gathered} \hline \text { Fm } \overline{3} m \text { (No. 225) } \\ \text { a,b,c;0,0,0 } \end{gathered}$	
	$\mathrm{GM}_{3}{ }^{\text {a }}$ ($\left.\mathrm{a}, 0\right)$	$\begin{gathered} 14 / \mathrm{mmm} \text { (No. 139) } \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2, \mathrm{c} ; 0,0,0 \end{gathered}$	matrices of the irreps
	$\mathrm{GM}_{5}^{+}:(\mathrm{a}, 0,0)$	$\begin{gathered} \text { Immm (No. 71) } \\ \mathrm{a} / 2+\mathrm{b} / 2,-1 / 2 \mathrm{a}+\mathrm{b} / 2, \mathrm{c} ; 0,0,0 \end{gathered}$	
DT: $(0,1 / 2,0)(1 / 2,0,0)(\mathbf{0 , 0 , 1 / 2)}$	$D T_{5}:(0,0,0,0,0,0,0,0, a, 0,0, a)$	$\begin{gathered} \text { Pnma (No. 62) } \\ -2 c, a / 2+b / 2, a / 2-b / 2 ; 0,1 / 4,-1 / 4 \end{gathered}$	matrices of the irreps
X: $(0,1,0)(1,0,0)(0,0,1)$	$\mathrm{X}_{2}=(0,0, a)$	$\begin{gathered} P 4_{2} / n m c(\text { No. 137 }) \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2, \mathrm{c} ; 0,1 / 4,1 / 4 \end{gathered}$	atrices of the irreps
	$\mathrm{X}_{3}{ }^{-}(0,0, a)$	$\begin{gathered} \text { P4/nmm (No. 129) } \\ \text { a/2-b/2,a/2+b/2,c;1/4,0,1/4 } \end{gathered}$	matrices of the irreps

Example 1: Fullerene-cubane crystal (e)

Use the option Get irreps for the other possible symmetries

15	Pnma (No. 62)		(0 0 -2	$1 / 2$ $1 / 2$ 0	$1 / 2$ $-1 / 2$ 0	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
16	Pmmn (No. 59)		$\left(\begin{array}{l}1 / 2 \\ 1 /\end{array}\right.$	$1 / 2$ $1 / 2$ 0	$-1 / 2$ $1 / 2$ 0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
17	Pcon (No. 56)		$\left(\begin{array}{l}1 / 2 \\ 1\end{array}\right.$	$1 / 2$ $1 / 2$ 0	$-1 / 2$ $1 / 2$ 0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
18	Pmma (No. 51)		-	0 0 -2	$1 / 2$ $1 / 2$ 0	$1 / 2$ $-1 / 2$ 0	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
19	Pccm (No. 49)		$\left(\begin{array}{l}1 / 2 \\ 1\end{array}\right.$	$1 / 2$ $1 / 2$ 0	$-1 / 2$ $1 / 2$ 0	0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps
20	Pmmm (No. 47)		$\left(\begin{array}{c}1 / \\ -1\end{array}\right.$	$1 / 2$ $1 / 2$ 0	$1 / 2$ $1 / 2$ 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$24=4 \times 6$	Conjugacy Class	Get irreps

Only two of the symmetries can be result of a single irrep order parameter (fulfill the Landau condition)

$$
\begin{aligned}
& F m \overline{3} m \xrightarrow{\text { DT5 }} \operatorname{Pnma}(-2 \boldsymbol{c},-1 / 2 \boldsymbol{a}+1 / 2 \boldsymbol{b}, 1 / 2 \boldsymbol{a}-1 / 2 \boldsymbol{b} ; 0,1 / 4,-1 / 4) \\
& \text { DT5 } \\
& F m \overline{3} m \rightarrow P m m a(-2 \boldsymbol{c}, 1 / 2 a+1 / 2 \boldsymbol{b}, 1 / 2 \boldsymbol{a}-1 / 2 \boldsymbol{b} ; 0,0,1 / 2)
\end{aligned}
$$

Example 1: Fullerene-cubane crystal (f)

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

Group \rightarrow subgroup	Transformation matrix
$F m \overline{3} m$ (N. 225) \rightarrow Pmmn (N. 59)	$\left(\begin{array}{rrrr}1 / 2 & -1 / 2 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 & 1 / 4 \\ 0 & 0 & 2 & -1 / 4\end{array}\right)$

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: $(0,0,0)$	$\mathrm{GM}_{1}{ }^{+}$: (a)	$\begin{gathered} \hline F m \overline{3} m(\text { No. 225) } \\ \text { a,b,c;0,0,0 } \\ \hline \end{gathered}$	
	$\mathrm{GM}_{3}{ }^{\text {a }}$ ($\left.\mathrm{a}, 0\right)$	$\begin{gathered} 14 / \mathrm{mmm} \text { (No. 139) } \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2, \mathrm{c} ; 0,0,0 \end{gathered}$	matrices of the irreps
	GM_{5}^{+}: $(\mathrm{a}, 0,0)$	$\begin{gathered} \text { Immm (No. 71) } \\ \mathrm{a} / 2+\mathrm{b} / 2,-1 / 2 \mathrm{a}+\mathrm{b} / 2, \mathrm{c} ; 0,0,0 \end{gathered}$	
DT: $(0,1 / 2,0)(1 / 2,0,0)(\mathbf{0 , 0 , 1 / 2)}$	$D T_{1}:(0,0,0,0, a, a)$	$\begin{array}{\|c\|} \hline P 4 / n m m \text { (No. 129) } \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2,2 \mathrm{c} ; 1 / 4,0,-1 / 4 \end{array}$	
	$\mathrm{DT}_{3}:(0,0,0,0, \mathrm{a},-\mathrm{a})$	$\begin{array}{\|c\|} P 4_{2} / n m c(\text { No. 137) } \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2,2 \mathrm{c} ; 1 / 4,0,-1 / 4 \end{array}$	matrices of the irreps
$\mathrm{X}:(0,1,0)(1,0,0)(0,0,1)$	$\mathrm{X}_{2}{ }^{-}:(0,0, a)$	$\begin{gathered} P 4_{2} / n m c(\text { No. 137) } \\ \mathrm{a} / 2-\mathrm{b} / 2, \mathrm{a} / 2+\mathrm{b} / 2, \mathrm{c} ; 0,1 / 4,1 / 4 \end{gathered}$	matrices of the irreps
	$\mathrm{X}_{3}{ }^{-}(0,0, a)$	$\begin{gathered} \text { P4/nmm (No. 129) } \\ \text { a/2-b/2,a/2+b/2,c;1/4,0,1/4 } \end{gathered}$	matrices of the ireps

Example 1: Fullerene-cubane crystal (g)

Do the same process as in the previous step for the other 3 possible symmetries

| Group \rightarrow subgroup | Transformation matrix |
| :---: | :---: | :---: |
| $F m \overline{3} m$ (N. 225) $\rightarrow \operatorname{Pccn}(\mathrm{N} .56)$ | $\left(\begin{array}{rrrr}1 / 2 & -1 / 2 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 & 1 / 4 \\ 0 & 0 & 2 & -1 / 4\end{array}\right)$ |

Group \rightarrow subgroup	Transformation matrix		
$F m \overline{3} m$ (N .225) \rightarrow Pmmm (N. 47)	$\left(\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2 \\ 0 & 0\end{array}\right.$	0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$

Example 1: Fullerene-cubane crystal (h)

∇ Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter).

This option allows to discard all possible symmetries that cannot be reached by the action of a single irrep distortion

Example 1: Fullerene-cubane crystal (h)

This condition reduces the number of possible distinct symmetries from 99 to 31

From the six-non-centered subgroups with point group $m m m$, only the subroups of type Pnma and Pmma appear here

Example 2: Parent space group Pnma

Let us suppose that we observe a structure with symmetry Pnma, which exhibits when lowering the temperature a phase transition. Diffraction experiments in the low symmetry phase give evidence of superstructure reflections, which can be indexes as ($h, k, l+1 / 2$).

This additional diffraction peaks indicates a distortion $\Rightarrow \begin{gathered}\text { duplication of } \\ \text { the c parameter }\end{gathered}$

Modulation wave vector ($0,0,1 / 2$)

We wish to know the possible space group symmetries that this low temperature phase can have, in order to construct structural models that could fit the diffraction data

Example 2: Parent space group Pnma (a)

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the groupsubgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

- Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

Enter the serial number of the space group:
choose it
62

Introduce the supercell

O List of subgroups

O Graph of subgroups

Example 2: Parent space group Pnma (a)

Input data

Subgroups of the space group : Lowest space group to consider Supercell given by:
Centred supercell:

Pnma (N. 62)
$P 1$ (N. 1) (1,0,0),(0,1,0),(0,0,2)

List of subgroups that fulfill the given conditions
Get the subgroup-graph

N	Group Symbol	Transformation matrix					Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	Pca2 ${ }_{1}$ (No. 29)		0 0 -2	0 1 0	1 0 0	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
2	Pmc2 ${ }_{1}$ (No. 26)		0 -1 0	0 0 -2	1 0 0	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
3	$P 2_{1} / \mathrm{C}$ (No. 14)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	1 0	0 0 2	($\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
4	$P 2_{1} / m$ (No. 11)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	1 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
5	Pc (No. 7)		($\begin{array}{r}0 \\ -1 \\ 0\end{array}$	0 0 -2	1 0 0	($\left.\begin{array}{r}0 \\ 0 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
6	Pc (No. 7)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$		0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
7	Pm (No. 6)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
8	$P 2_{1}$ (No. 4)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0	0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
9	$P 2_{1}$ (No. 4)		0 -1 0	1 0 0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
10	$P \overline{1}$ (No. 2)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
11	P1 (No. 1)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	0	$16=2 \times 8$	Conjugacy Class	Get irreps

Without any additional restriction the program lists 11 possible space group symmetries

Example 2: Parent space group Pnma (b)

Example 2: Parent space group Pnma (b)

Go back to the input page

List of subgroups that fulfill the given conditions

Get the subgroup-graph								
N	Group Symbol	Transformation matrix				Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	Pca2 ${ }_{1}$ (No. 29)	$\left(\begin{array}{r}0 \\ 0 \\ -2\end{array}\right.$	0 1 0	1 0	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
2	Pmc2 ${ }_{1}$ (No. 26)	$\left(\begin{array}{r}0 \\ -1 \\ 0\end{array}\right.$	0 0 -2	1 0 0	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
3	$P 2{ }_{1} / \mathrm{c}$ (No. 14)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
4	$P 2{ }_{1} / m$ (No. 11)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps

Example 2: Parent space group Pnma (c)

Go back to the input page

Possible limitations of the subgroup list.		
(Check only one option on the (Check only one option on the let	the right)	
O Lowest space group to consider		
	1	
O Lowest point group to consider	------	\checkmark
- Lowest crystal system to consider	------	\checkmark
\bigcirc Only maximal subgroups		

Further limitations considering physical properties of the point groups

- Only centrosymmetric/non centrosymmetric groups
- Only polar/non polar groups
all
all \checkmark
- Only proper ferroelastic phase transitions

List of subgroups that fulfill the given conditions
Get the subgroup-graph

N	Group Symbol	Transformation matrix					Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	Pca2 ${ }_{1}$ (No. 29)		0 0 -2	0 1	1 0	($\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
2	$\mathrm{Pmc2}_{1}($ No. 26)		0 -1 0	0 0 -2	1	($\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
3	Pc (No. 7)		0 -1 0	0 0 -2	0	($\left.\begin{array}{r}0 \\ 0 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
4	Pc (No. 7)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	($\left.\begin{array}{r}0 \\ 1 / 4 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
5	Pm (No. 6)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
6	$P 2_{1}$ (No. 4)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
7	$P 2_{1}$ (No. 4)		0 -1 0	1 0 0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
8	P1 (No. 1)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$16=2 \times 8$	Conjugacy Class	Get irreps

Example 2: Parent space group Pnma (d)

Go back to the input page

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right) (Check only one option on the left and the specific value on the right)

- Lowest space group to consider
- Lowest point group to consider
- Lowest crystal system to consider

O Only maximal subgroups

Further limitations considering physical properties of the point groups

- Only centrosymmetric/non
centrosymmetric groups
- Only polar/non polar groups
- Only proper ferroelastic phase transitions

N	Group Symbol	Transformation matrix					Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	Pca2 ${ }_{1}$ (No. 29)		0 0 -2	0 1	1 0 0	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
2	Pmc2 ${ }_{1}$ (No. 26)		0 -1 0	0 0 -2	1 0 0	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
3	$P 2_{1} / \mathrm{C}$ (No. 14)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
4	$P 2{ }_{1} / m$ (No. 11)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
5	Pc (No. 7)		0 -1 0	0 0 -2	1 0 0	($\left.\begin{array}{r}0 \\ 0 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
6	Pc (No. 7)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	1	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
7	Pm (No. 6)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	1	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
8	$P 2_{1}$ (No. 4)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
9	$P 2_{1}$ (No. 4)		0 -1 0	0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
10	$P \overline{1}$ (No. 2)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
11	P1 (No. 1)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$16=2 \times 8$	Conjugacy Class	Get irreps

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: $(0,0,0)$	$\mathrm{GM}_{1}{ }^{+}$: a)	$\begin{gathered} \hline \text { Pnma (No. 62) } \\ \text { a,b,c;0,0,0 } \end{gathered}$	
	$\mathrm{GM}_{3}{ }^{-}$(a)	$\mathrm{Pmc2}_{1}$ (No. 26) b,-c,-a;0,1/4,1/4	matrices of the irreps
$Z:(0,0,1 / 2)$	$Z_{2}:(a, a)$	$\begin{gathered} \hline P c a 2_{1}(\text { No. 29) } \\ -2 c, b, a ; 0,1 / 4,-1 / 4 \end{gathered}$	matrices of the irreps

Example 2: Parent space group Pnma (e)

List of subgroups that can be the result of a Landau-type transition

Go back to the input page
\square Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter)

Possible limitations of the subgroup list.

(Check only one option on the left and the specific value on the right) (Check only one option on the left and the specific value on the right)

O Lowest space group to consider
O Lowest point group to consider

- Lowest crystal system to consider

1
1

$\cdots \quad \vee$
Only maximal subgroups

Further limitations considering physical properties of the point groups

- Only centrosymmetric/non centrosymmetric groups
- Only polar/non polar groups
- Only proper ferroelastic phase transitions

[^1]

Example 2: Parent space group Pnma (f)

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Enter the serial number of the space group:

Introduce the wave vector(s)
(Give the components of the wave vectors in a fractional form, n / m)
\square
Show the independent vectors of the star
Choose the whole star of the propagation vector
More wave-vectors needed

Example 2: Parent space group Pnma (g)

List of subgroups that fulfill the given conditions

Example 2: Parent space group Pnma (h)

Go back to the input page

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.
Other alternatives for the input of the program:

- Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class. - Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wave-vectors stars.
- The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be included.
- When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff positions of the atoms and/or a set of irreducible representations.

Introduce the wave vector(s)

(Give the components of the wave vectors in a fractional form, n / m)
$k_{1 x} 0$ \square $k_{1 y} 0$ $k_{1 z} 1 / 2$

Show the independent vectors of the star
\square Choose the whole star of the propagation vector
More wave-vectors needed
\square Include the subgroups compatible with intermediate cells.
(It is not applied when only the maximal subgroups are calculated)

Optional: refine further the subgroups of the output giving the Wyckoff positions of the atoms
Give the Wyckoff positions
Wyckoff
\square Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter).
Optional: refine further the subgroups of the output giving a set of irreps
Choose the irreps

Example 2: Parent space group Pnma (h)

The possible irreps that can describe such type of distortion

Space group: (No. 62)
Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):
Z:(0,0,1/2)
Descomposition of the mechanical representation(s) into irreps.
$8 \mathrm{~d}:(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad \rightarrow 6 \times \mathrm{Z} 1(2) \oplus 6 \times \mathrm{Z2}(2)$
Choose the representation(s)
irreps: $\square Z 1(2) \square Z 2(2)$
(In parentheses, the dimensions of the irreducible representations of the little group of k)

Example 2: Parent space group Pnma (i)

Space group: (No. 62)
Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):
Z:(0,0,1/2)
Descomposition of the mechanical representation(s) into irreps.
$8 \mathrm{~d}:(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad \rightarrow \quad 6 \times \mathrm{Z1}(2) \oplus 6 \times \mathrm{Z2}(2)$
Choose the representation(s)
irreps: $\quad \vee \mathrm{Z} 1(2) \square \mathrm{Z2}(2)$
(In parentheses, the dimensions of the irreducible representations of the little group of k)

Example 2: Parent space group Pnma (i)

List of subgroups compatible which have as primary irreps all the irreps given
Get the subgroup-graph
More options

The list of possible symmetries is now reduced to three

Example 2: Parent space group Pnma (i)

Space group: (No. 62)
Choose the irreducible representation(s) for each modulation vector

N	Group Symbol	Transformation matrix				$\begin{gathered} \text { Group-Subgroup } \\ \text { index } \end{gathered}$	Other members of the Conjugacy Class	irreps
1	Pca2 ${ }_{1}$ (No. 29)	$\left(\begin{array}{r}0 \\ 0 \\ -2\end{array}\right.$	0 1 0	${ }_{0}^{1}$	($\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
2	P2 1_{1} ((No. 14)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 2	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$4=2 \times 2$	Conjugacy Class	Get irreps
3	Pc (No.7)	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$		2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations

Wave-vectors of the star (1 vector):
Z:(0,0,1/2)
Descomposition of the mechanical representation(s) into irreps.
$8 \mathrm{~d}:(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad \rightarrow \quad 6 \times \mathrm{Z} 1(2) \oplus 6 \times \mathrm{Z2}(2)$
Choose the representation(s)

irreps:

-Z1(2) $\mathrm{Z} 2(2)$
(In parentheses, the dimensions of the irreducible representations of the little group of k)

Example 2: Parent space group Pnma (j)

Space group: (No. 62)
Choose the irreducible representation(s) for each modulation vector

If no Wyckoff position has been given, a general position will be assumed

Possible irreducible representations
Wave-vectors of the star (1 vector):
Z:(0,0,1/2)
Descomposition of the mechanical representation(s) into irreps.
$8 \mathrm{~d}:(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad \rightarrow \quad 6 \times \mathrm{Z1}(2) \oplus 6 \times \mathrm{Z2}(2)$
Choose the representation(s)
irreps: $\quad \nabla \mathrm{Z} 1(2) \vee \mathrm{Z} 2(2)$
(In parentheses, the dimensions of the irreducible representations of the little group of k)

Example 2: Parent space group Pnma (j)

Input data	
Subgroups of the space group :	Pnma (N. 62)
Lowest space group to consider:	$P 1(\mathrm{~N} .1)$
Modulation wave-vectors	$(0,0,1 / 2)$
Irreducible representations	Z1,Z2
Z:(0,0,1/2)	

List of subgroups compatible which have as primary irreps all the irreps given

Get the subgroup-graph							More options		
N	Group Symbol	Transformation matrix					Group-Subgroup index	Other members of the Conjugacy Class	irreps
1	Pc (No. 7)		0 -1 0	0 0 -2	1 0 0	($\left.\begin{array}{r}0 \\ 0 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
2	$P 2_{1}$ (No. 4)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
3	$P 2_{1}$ (No. 4)		0 -1 0	1 0 0	0 0 2	$\left.\begin{array}{r}0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
4	$P \overline{1}$ (No. 2)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	($\left.\begin{array}{r}0 \\ 0 \\ 1 / 2\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
5	P1 (No. 1)		$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$	0 1 0	0 0 2	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	16=2x8	Conjugacy Class	Get irreps

The list is reduced to 5 subgroups that were not listed when choosing separately Z1 and Z 2 as single active irreps

Example 2: Parent space group Pnma (j)

$○$	All irreps should be active to reach the subgroup.
\bigcirc	At least one irrep should be active to reach the subgroup.

Submit
List of subgroups compatible which have as primary irreps some of the given irreps

Example 3: Perovskite

SrTiO_{3}

I4/mcm (No. 140)

$$
\left(\boldsymbol{a}_{P}+\boldsymbol{b}_{P},-\boldsymbol{a}_{P}+\boldsymbol{b}_{P}, 2 \boldsymbol{c}_{P} ; 0,0,0\right)
$$

All possible symmetries that can occur in a perovskite duet to unstable rigid-unit modes

Example 3: Perovskite(a)

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the groupsubgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given.

Other alternatives for the input of the program:

- Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.

Enter the serial number of the space group:

[^2]> 98 subgroups are possible

Space group $\operatorname{Pm} \overline{3} m$ (No. 221)

Example 3: Perovskite (b)

Go back to the input page
Optional: refine further the subgroups of the output giving the Wyckoff positions of the atoms

Give the Wyckoff positions
Wyckoff

221
3.90643 .90643 .9064 90. 90. 90 . 3

Sr	1	1 a	0	0	0
Ti	1	1 b	0.5	0.5	0.5
O	1	3 c	0.5	0.5	0

Check the type of Wyckoff positions of the atoms

	Multiplicity	Wyckoff Letter	Coordinates
\square	48	n	
\square	24	m	$(x, x, z),(x,-z, x),(x, z,-x),(z, x,--x)$ $(-z, x, x),(-x, x,-z),(x,-x, z),(x,-x,-z)$ $(-x, x,-z),(-x,-x, z),(x, x,-z),(-x,-x,-z)$ $(-x, z, x),(-x,-z,-x),(z,-x, x),(-z,-x,-x)$ $(z, x, x),(x, z, x),(-x, z,-x),(-z,-x, x)$ $(-x,-z, x),(z,-x,-x),(x,-z,-x),(-z, x,-x)$
\square	24	1	$(1 / 2, y, z),(1 / 2,-z, y),(1 / 2, z,-y),(z, y, 1 / 2)$ $(-z, y, 1 / 2),(-y, 1 / 2, z),(y, 1 / 2, z),(1 / 2,-y,-z)$ $(1 / 2, y,-z),(1 / 2,-y, z),(y, 1 / 2,-z),(-y, 1 / 2,-z)$ $(1 / 2, z, y),(1 / 2,-z,-y),(z,-y, 1 / 2),(-z,-y, 1 / 2)$ $(z, 1 / 2, y),(y, z, 1 / 2),(-y, z, 1 / 2),(-z, 1 / 2, y)$ $(-y,-z, 1 / 2),(z, 1 / 2,-y),(y,-z, 1 / 2),(-z, 1 / 2,-y)$
\square	24	k	$\begin{gathered} (0, y, z),(0,-z, y),(0, z,-y),(z, y, 0) \\ (-z, y, 0),(-y, 0, z),(y, 0, z),(0,-y,-z) \\ (0, y,-z),(0,-y, z),(y, 0,-z),(-y, 0,-z) \\ (0, z, y),(0,-z,-y),(z,-y, 0),(-z,-y, 0) \\ (z, 0, y),(y, z, 0),(-y, z, 0),(-z, 0, y) \\ (-y,-z, 0),(z, 0,-y),(y,-z, 0),(-z, 0,-y) \end{gathered}$
\square	12	j	$(1 / 2, y, y),(1 / 2,-y, y),(1 / 2, y,-y),(y, y, 1 / 2)$ $(-y, y, 1 / 2),(-y, 1 / 2, y),(y, 1 / 2, y),(1 / 2,-y,-y)$ $(y, 1 / 2,-y),(-y, 1 / 2,-y),(y,-y, 1 / 2),(-y,-y, 1 / 2)$
\square	12	i	$\begin{gathered} (0, y, y),(0,-y, y),(0, y,-y),(y, y, 0) \\ (-y, y, 0),(-y, 0, y),(y, 0, y),(0,-y,-y) \\ (y, 0,-y),(-y, 0,-y),(y,-y, 0),(-y,-y, 0) \end{gathered}$
\square	12	h	$\begin{gathered} (x, 1 / 2,0),(x, 0,1 / 2),(0,1 / 2,-x),(0,1 / 2, x) \\ (1 / 2, x, 0),(1 / 2,-x, 0),(-x, 1 / 2,0),(-x, 0,1 / 2) \\ (0, x, 1 / 2),(1 / 2,0, x),(1 / 2,0,-x),(0,-x, 1 / 2) \\ \hline \hline \end{gathered}$
\square	8	g	$\begin{gathered} (x, x, x),(x,-x, x),(x, x,-x),(-x, x, x) \\ (x,--x,-x),(-x, x,-x),(-x,-x, x),(-x,-x,-x) \end{gathered}$
\square	6	f	$\begin{aligned} & (x, 1 / 2,1 / 2),(1 / 2,1 / 2,-x),(1 / 2,1 / 2, x) \\ & (1 / 2, x, 1 / 2),(1 / 2,-x, 1 / 2),(-x, 1 / 2,1 / 2) \end{aligned}$
\square	6	e	$\begin{aligned} & (x, 0,0),(0,0,-x),(0,0, x) \\ & (0, x, 0),(0,-x, 0),(-x, 0,0) \end{aligned}$
-	3	d	$(1 / 2,0,0),(0,0,1 / 2),(0,1 / 2,0)$
\square	3	c	(0,1/2,1/2),(1/2,1/2,0),(1/2,0,1/2)
\square	1	b	(1/2,1/2,1/2)
\square	1	a	$(0,0,0)$

\square Do not consider subgroups attainable only through strain-like distortions

Example 3: Perovskite (c)

Enter the serial number of the space group:

List of possible subgroups assuming the given wyckoff positions

[^3]\square Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter).

Wyckoff positions of the atoms

3d:(1/2,0,0)
1b:(1/2,1/2,1/2)
1a: $(0,0,0)$

Possible limitations of the subgroup list.
(Check only one option on the left and the specific value on the right)
(Check only one option on the left and the specific value on the right)

- Lowest space group to consider
- Lowest crystal system to consider
- Only maximal subgroups

Example 3: Perovskite (d)

Subgroups that belong to the same conjugacy class, limited to those compatible with the given supercell or the supercell determined by the given wave vector(s).

N	Group Symbol	Transformation matrix	Group-Subgroup index	Symmetry operations	Set of subgroups*	irreps
5.1	14/mcm (No. 140)	$\left(\begin{array}{rrrr}1 & -1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$	$6=2 \times 3$	Plain text format Matrix form	List of subgroups Graph of subgroups	Get irreps
5.2	14/mcm (No. 140)	$\left(\begin{array}{rrrr}0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0\end{array}\right)$	$6=2 \times 3$	Plain text format Matrix form	List of subgroups Graph of subgroups	Get irreps
5.3	14/mcm (No. 140)	$\left(\begin{array}{rrrr}1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0\end{array}\right)$	$6=2 \times 3$	Plain text format Matrix form	List of subgroups Graph of subgroups	Get irreps

* List or graph of subgroups that are related with the chosen group through group-subgroup relation.

Example 3: Perovskite (e)

Group \rightarrow subgroup	Transformation matrix
$P m \overline{3} m($ N. 221 $) \rightarrow I 4 / m c m ~(N .140)$	$\left(\begin{array}{rrrr} \\ & \left(\begin{array}{rlll}1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0\end{array}\right) \\ \hline\end{array}\right.$

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: (0,0,0)	$\mathrm{GM}_{1}{ }^{+}$: ${ }^{\text {a }}$)	$\begin{gathered} \hline \hline P m \overline{3} m(\text { No. 221) } \\ \text { a,b,c;0,0,0 } \end{gathered}$	
	$\mathrm{GM}_{3}{ }^{\text {: }}(\mathrm{a}, 0)$	$\begin{gathered} \hline \hline \text { P4/mmm (No. 123) } \\ \text { a,b,c;0,0,0 } \end{gathered}$	matrices of the irreps
R: (1/2,1/2,1/2)	$\mathrm{R}_{4}{ }^{+}:(\mathrm{a}, 0,0)$	14/mcm (No. 140) a-b,a+b,2c;0,0,0	matrices of the irreps

Example 3: Perovskite (f)

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: $(0,0,0)$	$\mathrm{GM}_{1}{ }^{+}$: (a)	$\begin{gathered} P m \overline{3} m(\text { No. 221) } \\ \text { a,b,c;0,0,0 } \end{gathered}$	
	$\mathrm{GM}_{3}{ }^{\text {: }}$ (a,-($\left.\left.\sqrt{3} \mathrm{a}\right)\right)$	P4/mmm (No. 123) a,-c,b;0,0,0	matrices of the irreps
R: (1/2,1/2,1/2)	$\mathrm{R}_{4}{ }^{+}:(0,0, a)$	$\begin{aligned} & 14 / \mathrm{mcm}(\text { No. 140) } \\ & \mathrm{a}+\mathrm{c},-\mathrm{a}+\mathrm{c},-2 \mathrm{~b} ; 0,0,0 \end{aligned}$	matrices of the irreps

Group \rightarrow subgroup	Transformation matrix		
$\operatorname{Pm} \overline{3} m($ N. 221 $) \rightarrow / 4 / m c m ~(N .140)$	$\left(\begin{array}{rrrr}0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0\end{array}\right)$		

Representations and order parameters

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: $(0,0,0)$	GM_{1}^{+}: (a)	$\begin{gathered} \hline P m \overline{3} m(\text { No. 221) } \\ \text { a,b, } ; ; 0,0,0 \end{gathered}$	
	$\mathrm{GM}^{+}:(\mathrm{a}, \sqrt{3} \mathrm{a})$	$\begin{gathered} \hline \text { P4/mmm (No. 123) } \\ -\mathrm{c}, \mathrm{~b}, \mathrm{a} ; 0,0,0 \end{gathered}$	matrices of the irreps
R: (1/2,1/2,1/2)	$\mathrm{R}_{4}{ }^{+}:(0, a, 0)$	$\begin{aligned} & \hline 14 / \mathrm{mcm}(\text { No. } 140) \\ & \mathrm{b}-\mathrm{c}, \mathrm{~b}+\mathrm{c}, 2 \mathrm{a} ; 0,0,0 \end{aligned}$	matrices of the irreps

The direction changed for the R_{4}^{+}

Example 3: Perovskite (g)

-	b	t	$(1 / 2, x, 1 / 2),(1 / 2,-x, 1 / 2),(-\mathrm{x}, 1 / 2,1 / 2)$
\square	6	e	$(\mathrm{x}, 0,0),(0,0,-\mathrm{x}),(0,0, \mathrm{x})$ $(0, x, 0),(0,-x, 0),(-\mathrm{x}, 0,0)$
\square	3	d	$(1 / 2,0,0),(0,0,1 / 2),(0,1 / 2,0)$
\square	3	c	$(0,1 / 2,1 / 2),(1 / 2,1 / 2,0),(1 / 2,0,1 / 2)$
\square	1	b	$(1 / 2,1 / 2,1 / 2)$
\square	1	a	$(0,0,0)$

\square Do not consider subgroups attainable only through strain-like distortions

[^4]Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optional information about the classes or subgroups is also given

Other alternatives for the input of the program:

- Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.
- Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wavevectors stars.
- The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be

Enter the serial number of the space group:

choose it 221

Introduce the wave vector(s)
(Give the components of the wave vectors in a fractional form, n / m)
$k_{1 \times} \quad 1 / 2$ \square $\mathrm{k}_{1 \mathrm{y}} 1 / 2$ \qquad $\mathrm{k}_{1 \mathrm{z}} 1 / 2$
Show the independent vectors of the star
\square Choose the whole star of the propagation vector
More wave-vectors needed

[^5]Optional: refine further the subgroups of the output giving the Wyckoff positions of the atoms Give the Wyckoff positions

Example 3: Perovskite (g)

Go back to the input page

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optiona information about the classes or subgroups is also given.

Other alternatives for the input of the program:

- Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry, or groups which belong to a specific crystal class.
- Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wavevectors stars.
- The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can be included.
- When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff positions of the atoms and/or a set of irreducible representations.

Tutorial_SUBGROUPS: download

See the Help for details
Space group: $\quad P m \overline{3} m$ (No. 221)

$k_{1}=(1 / 2,1 / 2,1 / 2)$

\square Include the subgroups compatible with intermediate cells.
(It is not applied when only the maximal subgroups are calculated)

```
Wyckoff positions of the atoms
3d:(1/2,0,0)
1b:(1/2,1/2,1/2)
1a:(0,0,0)
```

\square Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter)

Optional: refine further the subgroups of the output giving a set of irreps
Choose the irreps
Representations

Optional: possible limitations of the subgroup list
(Check only one option on the left and the specific value on the right)
(Check only one option on the left and the specific value on the right)

- Lowest space group to consider
- Lowest point group to consider

Lowest crystal system to consider
choose it

Only maximal subgroups

Example 3: Perovskite (g)

> Space group: $\operatorname{Pm} \overline{3} m$ (No. 221)
> Choose the irreducible representation(s) for each modulation vector

> If no Wyckoff position has been given, a general position will be assumed

> Non bolded irreps are incompatible with the given Wyckoff positions Bolded irreps are compatible with at least one given Wyckoff position Red colored irreps are compatible with all the Wyckoff positions given

> Possible irreducible representations

Wave-vectors of the star (1 vector):
R:(1/2,1/2,1/2)
Descomposition of the mechanical representation(s) into irreps.

```
3d:(1/2,0,0) }\quad->\quad1\timesR1+(1)\oplus1\timesR3+(2) \oplus1\timesR4+(3)\oplus1\timesR5+(3
1b:(1/2,1/2,1/2) }\quad->\quad1\timesR5+(3
```


Choose the representation(s)
irreps: $\quad \square \mathbf{R 1 + (1)} \quad$ R1-(1) \quad R2+(1) \quad R2-(1) $\square \mathbf{R 3 + (2)} \quad$ R3-(2) $\checkmark \mathbf{R 4 + (3)} \square \mathbf{R 4 - (3) ~} \square \mathbf{R 5 + (3)} \quad$ R5-(3)
(In parentheses, the dimensions of the irreducible representations of the little group of k)

Only 4 of the 10 possible irreps are relevant

Example 3: Perovskite (g)

Subgroups: Subgroups compatible with a given supercell or some propagation vector(s).

Subgroups

The program Subgroups provides the possible subgroups of a space group which are possible for a given supercell. The program provides a list of the set of space groups or a graph showing the group-subgroup hierarchy, grouped into conjugacy classes. More optiona information about the classes or subgroups is also given
Other alternatives for the input of the program

- Instead of the whole set of subgroups, the output can be limited to subgroups having a chosen common subgroup of lowest symmetry, common point group of lowest symmetry or groups which belong to a specific crystal class
- Instead of a supercell, a set of modulation wave vectors can be given, including complete or partial wave vectors stars.
- The subgroups compatible with intermediate unit cells between the unit cell of the parent space group and the given supercell (or the supercell determined by the given wave vector(s) when the previous option is used) can b included.
- When a set of wave-vectors is used as input, the output can be further refined introducing the Wyckoff positions of the atoms and/or a set of irreducible representations.

Tutorial_SUBGROUPS: download

See the Help for details

```
Space group:
Pm\overline{3}m(No. 221)
```

$k_{1}=(1 / 2,1 / 2,1 / 2) \quad$ Set of chosen modulation wave-vectors
\square Include the subgroups compatible with intermediate cells.
(It is not applied when only the maximal subgroups are calculated)

```
Wyckoff positions of the atoms
3d:(1/2,0,0)
1b:(1/2,1/2,1/2)
1a:(0,0,0)
```


Chosen representations

R: $(1 / 2,1 / 2,1 / 2)$
R4+(3)
Optional: possible limitations of the subgroup list
(Check only one option on the left and the specific value on the right)
(Check only one option on the left and the specific value on the right)
Lowest space group to consider
Lowest point group to consider
Lowest crystal system to consider
Only maximal subgroups

Optional: further limitations considering physical properties of the point groups

- Only centrosymmetric / non-centrosymmetric groups
- Only polar / non-polar groups

Only proper ferroelastic phase transitions
This option is incompatible with the previous two options and with the selection of representations)

Example 3: Perovskite (g)

List of possible subgroups assuming the given wyckoff positions and that have as primary irreps all the irreps given

All possible distinct space group symmetries (subgroups of the parent $\operatorname{Pm} \overline{3} m$) that can result from an order parameter with R4+ symmetry.

Example 3: Perovskite (h)

All possible symmetries that a perovskite can acquire as the result of the freezing of some combinations of the three R4+
 distortions

Example 3: Perovskite (k)

SUBGROUPS can be combined with the program TRANSTRU to create an initial structural model of a distorted structure under one or more of the symmetries obtained with SUBGROUPS.

Create the CIF file for the $\mathrm{C} 2 / \mathrm{c}$ structure observed in LaCoO_{3}.

N	Group Symbol	Transformation matrix				$\begin{array}{\|c\|} \text { Group-Subgroup } \\ \text { index } \end{array}$	Other members of the Conjugacy Class	irreps
1	$R \overline{3} C$ (No .167)	$\left(\begin{array}{rr}-1 & \\ 0 & - \\ 1 & -\end{array}\right.$	$\begin{array}{rrr}0 \\ -1 & -2 \\ -1 & -2\end{array}$	2 -2 2	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$8=2 \times 4$	Conjugacy Class	Get irreps
2	14/mcm (No. 140)	$\left(\begin{array}{ll}1 & -1 \\ 0 \\ 1\end{array}\right.$	-1 0 -2 1	0 -2 0	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$6=2 \times 3$	Conjugacy Class	Get irreps
3	Imma (No. 74)	$\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right.$	$\begin{array}{ll}1 & \\ 1 & - \\ 0 & \\ 0\end{array}$	-1 1 0	$\left.\begin{array}{r}1 / 2 \\ 0 \\ 1 / 2\end{array}\right)$	$12=2 \times 6$	Conjugacy Class	Get irreps
4	C2/c (No. 15)	$\left(\begin{array}{r}1 \\ -2 \\ -1\end{array}\right.$	1 0 - 1	-1 0 1	$\left.\begin{array}{r}1 / 2 \\ 1 / 2 \\ 0\end{array}\right)$	$24=2 \times 12$	Conjugacy Class	Get irreps
5	C2/m (No. 12)	$\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right.$	0 0 -2	-1 1 0	$\left.\begin{array}{r}0 \\ 1 / 2 \\ 1 / 2\end{array}\right)$	$24=2 \times 12$	Conjugacy Class	Get irreps
6	$P \overline{1}$ (No. 2)	$\left(\begin{array}{rr}1 \\ 0 & -1 \\ -1\end{array}\right.$	-1 1 1 0	0 1 1	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$48=2 \times 24$	Conjugacy Class	Get irreps

Example 3: Perovskite (k)

https://www.cryst.ehu.es/cryst/transtru.html

Transform Structure

Transform Structure

TRANSTRU can transform a structure in two ways:

- To a lower symmetry space group. The transformed structure is given in the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.
- With an arbitrary matrix. The structure, including the cell parameters and the atoms in the unit cell, is transformed with an arbitrary matrix introduced by the user.

Only the default choice for the conventional setting of the space groups is used.

Structure Data [in CIF format] High Symmetry Structure	Browse... No file selected. HINT: [The option for a given filename is preferential]					
	$\begin{array}{\|lllll\|} \hline 221 & & & \\ 3.9064 & 3.9064 & 3.9064 & 90 . & \\ 3 & & & \\ 3 & & & \\ \text { La } & 1 & 1 \mathrm{a} & 0.000000 \\ \text { Co } & 1 & 1 \mathrm{~b} & 0.500000 \\ 0 & 1 & 3 \mathrm{c} & 0.500000 \end{array}$				0.000000 0.500000 0.500000	0.000000 0.500000 0.000000
	Transform structure to a subgroup basis Transform structure with an arbitrary matrix					

Example 3: Perovskite (k)

Transform Structure

Transform Structure

TRANSTRU transforms the structure to the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.

Example 3: Perovskite (k)

Transform structure

Transformation matrix: $a+2 b-c,-a-c+1 / 2,-a+c+1 / 2$
High symmetry structure

221					
3.90643 .90643 .9064 90. 90. 90.					
3					
La	1 a		000000	0.000000	0.000000
Co	1b		500000	0.500000	0.500000
\bigcirc	3 c		500000	0.500000	0.000000
Visualize this structure		CIF File	Cartesian Coordinates		
Low symmetry structure					
015					
9.568686	65.524484	5.524484	90.00000	125.264397	90.000000
La	14 c		750000	0.250000	0.500000
Co	14 e		000000	0.750000	0.750000
\bigcirc	1 4a		000000	0.000000	0.500000
\bigcirc	$1 _24 \mathrm{~b}$		000000	0.500000	0.000000
-	$1{ }^{-3} 4 \mathrm{~d}$		250000	0.250000	0.500000

Visualize this structure CIF File

Cartesian Coordinates

You can download directly the CIF file with the atomic positions corresponding to the ideal perovskite structure

[^0]: O List of subgroups

[^1]: O List of subgroups
 Oraph of subgroups

[^2]: - List of subgroups
 - Graph of subgroups

[^3]: \square Include the subgroups compatible with intermediate cells. (It is not applied when only the maximal subgroups are calculated)

[^4]: Submit

[^5]: \square Include the subgroups compatible with intermediate cells
 (It is not applied when only the maximal subgroups are calculated)

