

II. Modeling of commensurate magnetic structures and the Bilbao crystallographic server

J. Manuel Perez-Mato Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN

Symmetry-Based Computational Tools for Magnetic Crystallography

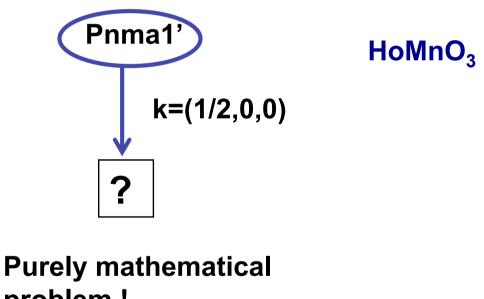
J.M. Perez-Mato,¹ S.V. Gallego,¹ E.S. Tasci,² L. Elcoro,¹ G. de la Flor,¹ and M.I. Aroyo¹

¹Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, 48080 Bilbao, Spain; email: jm.perez-mato@ehu.es
²Department of Physics Engineering, Hacettepe University, 06800 Ankara, Turkey

Annu. Rev. Mater. Res. 2015. 45:217–48 DOI: 10.1146/annurev-matsci-070214-021008

Symmetry based modeling ...

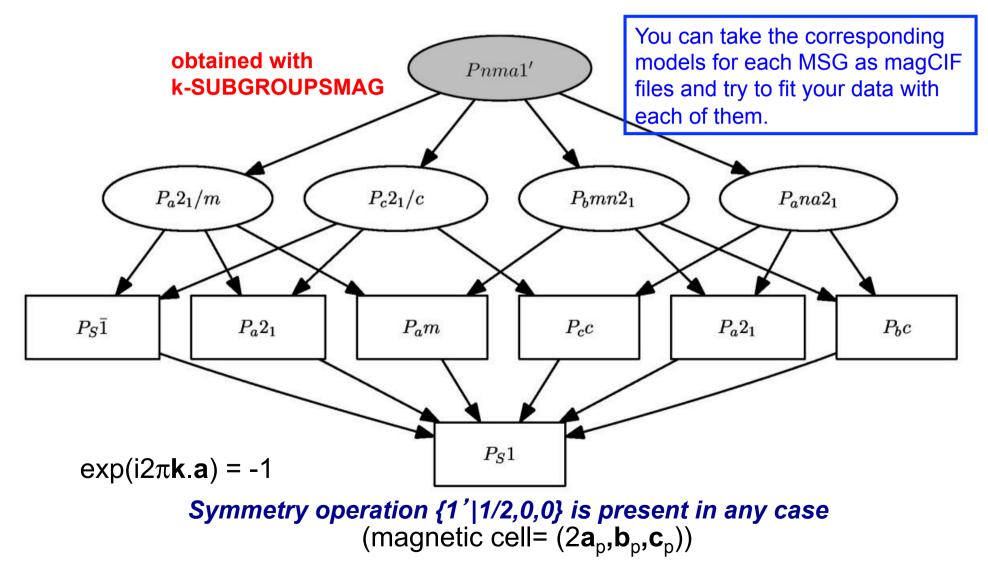
- First step?:


Assume a specific MSG and check if it works

But which MSGs are possible for a given material????

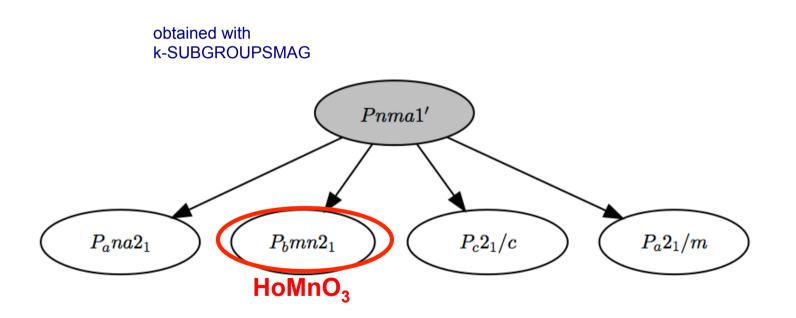
To answer this question is the real first step...

Symmetry based modeling of magnetic structures


Which MSGs are possible for a magnetic structure having space group Pnma in the paramagnetic phase and a magnetic ordering with propagation vector k=(1/2,0,0)?

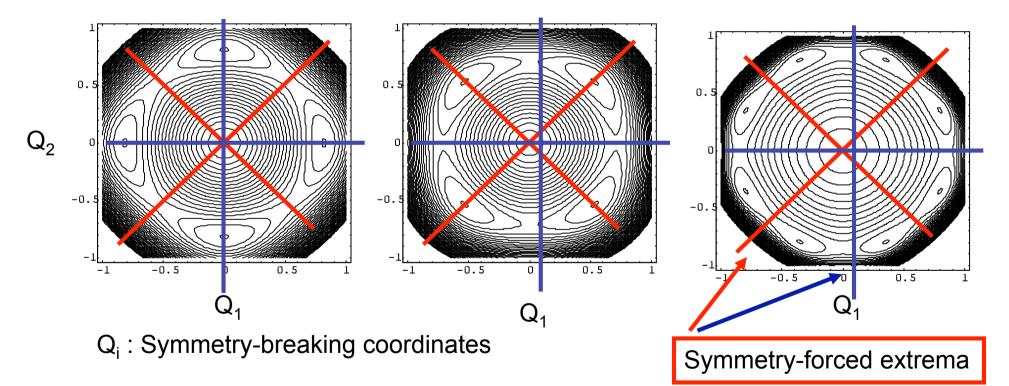
problem !

Symmetry based modeling of magnetic structures


Possible magnetic symmetries for a magnetic phase with propagation vector (1/2,0,0) and parent space group Pnma

Symmetry based modeling in magnetic structures

Possible magnetic symmetries for a magnetic phase with propagation vector (1/2,0,0) and parent space group Pnma


ONLY MAXIMAL SUBGROUPS (k-maximal symmetries)

About 70% of all published magnetic structures have k-maximal symmetries

Why the (magnetic) order parameter usually takes "special" directions of higher symmetry ?

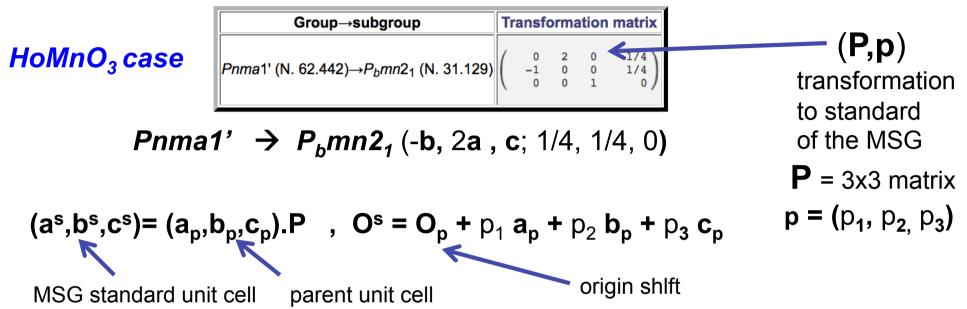
Domains/variants: symmetry related configurations (energy minima) around a higher-symmetry configuration

Energy in the configuration space is a SMOOTH function: Lower symmetry implies more equivalent minima, i.e. a more wavy energy function

Construction of possible models of a magnetic structure of MAXIMAL SYMMETRY compatible with its propagation vector (1k): MAXMAGN

	Magnetic Symmetry and Applications				
	MGENPOS	General Positions of Magnetic Space Groups			
	MWYCKPOS	Wyckoff Positions of Magnetic Space Groups			
		The k-vector types and Brillouin zones of Magnetic Space Groups			
	IDENTIFY MAGNETIC GROUP	Identification of a Magnetic Space Group from a set of generators in an arbitrary setting			
	BNS2OG	Transformation of symmetry operations between BNS and OG settings			
	mCIF2PCR	Transformation from mCIF to PCR format (FullProf).			
	MPOINT	Magnetic Point Group Tables			
	MAGNEXT	Extinction Rules of Magnetic Space Groups			
	MAXMAGN	Maximal magnetic space groups for a given space group and a propagation vector			
	MAGMODELIZE	Magnetic structure models for any given magnetic symmetry			
	STRCONVERT	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available)			
	k-SUBGROUPSMAG	Magnetic subgroups consistent with some given propagation vector(s) or a supercell			
	MAGNDATA	A collection of magnetic structures with portable cif-type files			
	MVISUALIZE	3D Visualization of magnetic structures with Jmol			
		Symmetry-adapted form of crystal tensors in magnetic phases			
	MAGNETIC REP.	Decomposition of the magnetic representation into irreps			
	Get_mirreps	Irreps and order parameters in a paramagnetic space group- magnetic subgroup phase transition			

Transformation matrix General positions Systematic absences Magnetic structure Group (BNS) 0 1 0 1/4 -1 0 0 1/4 Pcnma (#62.455) Show Show 0 0 1 Show 0 Alternatives (twin-related) 0 0) 1 0 0 0 0 1 Pcbca (#61.439) Show Show Show 0/ 0 0 1 Alternatives (twin-related) 0 1 0 1/4 0 0 1 1/4 Pabcn (#60.429) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 0 1 1/4 0 1 0 1/4 P_Bbcm (#57.390) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 1 0 0 \ 0 1 0 0 PACCN (#56.374) Show Show Show 0) 1 0 0 Alternatives (twin-related) 0 0 1 0) 0 0 -1 0 P_Abam (#55.362) Show Show Show 0 0/ 1 0 Alternatives (twin-related) 0 1 0 1/4 0 1 1/4 0 PAcca (#54.349) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 0) 1 0 0 0 1 0 Pcmna (#53.335) Show Show Show 1 0/ 0 0 Alternatives (twin-related)


Maximal magnetic space groups for the space group 64 (Cmce) and the propagation vector k = (1, 0, 0)

La₂CuO₄ *Parent symmetry group: Cmce (Cmca1')* Cu at WP 4a propagation vector: k=(1,0,0)

MAXMAGN:

Possible alternative maximal magnetic symmetries and corresponding models of the magnetic structure

Unambiguous description of a MSG as subgroup of a parent gray group:

Transformation to standard setting:

symmetry operation:

$$\begin{pmatrix} R^{s} & t^{s} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{P} & \mathbf{p} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} R & t \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{P} & \mathbf{p} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$
positions:

$$\begin{pmatrix} x^{s} \\ y^{s} \\ z^{s} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{P} & \mathbf{p} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$
magnetic moment (absolute) components:

$$\begin{pmatrix} m^{s}_{x}/a^{s} \\ m^{s}_{y}/b^{s} \\ m^{s}_{z}/c^{s} \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} m_{x}/a \\ m_{y}/b \\ m_{z}/c \end{pmatrix}$$

One should not confuse:

When describing a subgroup of the parent group:

Parent Pnma unit cell ($\mathbf{a}_{p}, \mathbf{b}_{p}, \mathbf{c}_{p}; 0, 0, 0$):

Pnma1' →
$$P_b mn2_1$$
 (-b, 2a, c; 1/4, 1/4, 0)

transformation to standard from the parent setting of *Pnma*

description of the subgroup by its type of MSG and a unit cell and origin with respect to the parent unit cell where it WOULD adquire its standard form

When describing a magnetic structure under this MSG using a non-standard setting:

Unit cell used
$$(2a_p, b_p, c_p; 0, 0, 0)$$
:
 P_bmn2_1 (-b, a, c; 1/8, 1/4, 0)
 $Alternative unit cell and origin with respect to the unit cell used
where the MSG WOULD adquire its standard form$

_parent_space_group.name_H_M_alt_ 'P	n	m	a'	
_parent_space_group.IT_number				62
_parent_space_group.transform_Pp_abc	'a	,b,	c;0,0,0'	

loop_

- _parent_propagation_vector.id
 _parent_propagation_vector.kxkykz
- k1 [1/2 0 0]

parent_space_group.child_transform_Pp_abc '2a,b,c;0,0,0'
_space_group_magn.transform_BNS_Pp_abc 'b,-a,c;1/8,1/4,0'

_space_group_magn.number_BNS_31.129 space_group_magn.name_BNS "P_b m n 2_1" _cell_length_a 11.67080 _cell_length_b 7.36060 _cell_length_c 5.25720 _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00

loop_ _space_group_symop_magn_operation.id _space_group_symop_magn_operation.xyz 1 x,y,z,+1 2 -x+1/4,-y,z+1/2,+1 3 x,-y+1/2,z,+1 4 -x+1/4,y+1/2,z+1/2,+1

loop_

space group symop magn centering.id space group symop magn centering.xyz 1 x,y,z,+1 2 x+1/2,y,z,-1

loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Ho_1 Ho 0.04195 0.25000 0.98250 Ho_2 Ho 0.95805 0.75000 0.01750 Mn Mn 0.00000 0.00000 0.50000 01_1 0 0.23110 0.25000 0.11130 01_2 0 0.76890 0.75000 0.88870 02_1 0 0.16405 0.05340 0.70130 02 2 0 0.83595 0.55340 0.29870

loop_ _atom_site_moment.label _atom_site_moment.crystalaxis_x _atom_site_moment.crystalaxis_y _atom_site_moment.crystalaxis_z _atom_site_moment.symmform Ho_1 0.00000 0.00000 0.00000 0,my,0 Ho_2 0.00000 0.00000 0.00000 0,my,0 Mn 1.00000 0.00000 0.00000 mx,my,mz

Transformation matrix General positions Systematic absences Magnetic structure Group (BNS) 0 1 0 1/4 -1 0 0 1/4 Pcnma (#62.455) Show Show Show 0 0 1 0 Alternatives (twin-related) 0 0) 1 0 0 0 0 1 Pcbca (#61.439) Show Show Show 0/ 0 0 1 Alternatives (twin-related) 1 0 1/4 0 0 0 1 1/4 Pabcn (#60.429) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 0 1 1/4 0 1 0 1/4 P_Bbcm (#57.390) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 1 0 0 0 0 1 0 PACCN (#56.374) Show Show Show 0/ 1 0 0 Alternatives (twin-related) 0 0 1 0) 0 0 -1 0 P_Abam (#55.362) Show Show Show 0) 0 1 0 Alternatives (twin-related) 0 1 0 1/4 0 1 1/4 0 PAcca (#54.349) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 0) 1 0 0 0 1 0 Pcmna (#53.335) Show Show Show 0/ 1 0 0 Alternatives (twin-related)

Maximal magnetic space groups for the space group 64 (Cmce) and the propagation vector k = (1, 0, 0)

La₂CuO₄ *Parent symmetry group: Cmce (Cmca1') propagation vector: k=(1,0,0)*

MAXMAGN:

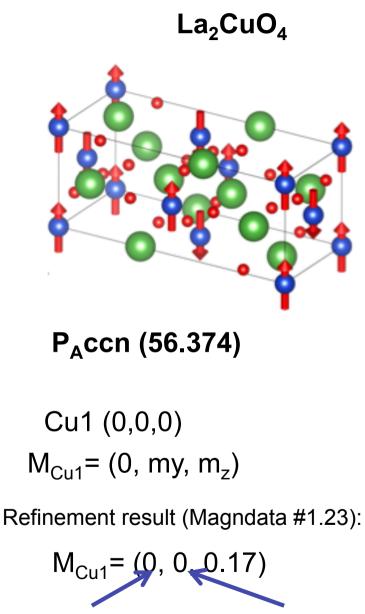
Possible alternative maximal magnetic symmetries and corresponding models of the magnetic structure

Selected magnetic space group: 5- P_Accn (#56.374)

Setting of the parent group

Lattice parameters: a=5.35700, b=13.14800, c=5.40600, alpha=90., beta=90., gamma=90.

Magnetic Moments associated to magnetic atoms


N	Atom	New WP	Multiplicity	Magnetic moment	Values of M _x , M _y , M _z
1	Cu1 Cu 0.00000 0.00000 0.00000	$(0,0,0 \mid 0,m_y,m_z) (0,1/2,1/2 \mid 0,-m_y,m_z)$ $(1/2,1/2,0 \mid 0,-m_y,-m_z) (1/2,0,1/2 \mid 0,m_y,-m_z)$	4	(0,M _y ,M _z)	$M_y = 0.00001$ $M_z = 0.00001$
2	La1 La 0.00000 0.36110 0.00460	$\begin{array}{c} (0,y,z \mid 0,m_{y},m_{z}) \; (0,-y+1/2,1/2 \mid 0,-m_{y},m_{z}) \\ (0,1/2,-z+1/2 \mid 0,-m_{y},m_{z}) \; (0,-y,-z \mid 0,m_{y},m_{z}) \\ (1/2,1/2,0 \mid 0,-m_{y},-m_{z}) \; (1/2,-y,1/2 \mid 0,m_{y},-m_{z}) \\ (1/2,0,-z+1/2 \mid 0,m_{y},-m_{z}) \; (1/2,-y+1/2,-z \mid 0,-m_{y},-m_{z}) \end{array}$	8	-	-
3	O1 O 0.25000 -0.00510 0.25000	$\begin{array}{c} (1/4,y,1/4 \mid 0,m_{y},0) \ (3/4,-y+1/2,3/4 \mid 0,-m_{y},0) \\ (3/4,-y,3/4 \mid 0,m_{y},0) \ (1/4,1/2,1/4 \mid 0,-m_{y},0) \\ (3/4,1/2,1/4 \mid 0,-m_{y},0) \ (1/4,-y,3/4 \mid 0,m_{y},0) \\ (1/4,-y+1/2,3/4 \mid 0,-m_{y},0) \ (3/4,0,1/4 \mid 0,m_{y},0) \end{array}$	8	-	-
4	O2 O 0.00000 0.18300 -0.02430	$\begin{array}{c} (0,y,z \mid 0,m_{y},m_{z}) \; (0,-y+1/2,1/2 \mid 0,-m_{y},m_{z}) \\ (0,1/2,-z+1/2 \mid 0,-m_{y},m_{z}) \; (0,-y,-z \mid 0,m_{y},m_{z}) \\ (1/2,1/2,0 \mid 0,-m_{y},-m_{z}) \; (1/2,-y,1/2 \mid 0,m_{y},-m_{z}) \\ (1/2,0,-z+1/2 \mid 0,m_{y},-m_{z}) \; (1/2,-y+1/2,-z \mid 0,-m_{y},-m_{z}) \end{array}$	8	-	-

[Go to setting standard (c, a, b; 0, 0, 0)]

Export data to MCIF file Go to a subgroup

Transformation matrix General positions Systematic absences Magnetic structure Group (BNS) 0 1/4 -1 0 0 1/4 Pcnma (#62.455) Show Show 0 1 0 Show 0 Alternatives (twin-related) 0 0) 0 0 0 1 Pcbca (#61.439) Show Show 0) Show 1 0 0 Alternatives (twin-related) 0 1. 0 1/4 1 1/4 0 0 Pabcn (#60.429) Show Show Show 1 0 0 0 Alternatives (twin-related) 0 1 1/4 1/4 0 0 P_Bbcm (#57.390) Show Show Show 0 1 0 0 Alternatives (twin-related) 0) 1 0 0 0 1 PAccn (#56.374) Show Show Show 0/ 0 0 Alternatives (twin-related) 0 0 -1 0 0 -1 P_Abam (#55.362) Show Show Show 0) 0 0 Alternatives (twin-related) 0 1/4 1 1 1/4 0 0 PAcca (#54.349) Show Show Show 0 0 1 0 Alternatives (twin-related) 0 0) 0 0 0 Pcmna (#53.335) Show Show Show 0) 0 0 1 Alternatives (twin-related)

Maximal magnetic space groups for the space group 64 (*Cmce*) and the propagation vector k = (1, 0, 0)

symmetry forced

approximate value

Construction of possible models of a magnetic structure from the knowledge of its propagation vector(s):

k-SUBGROUPSMAG & MAGMODELIZE

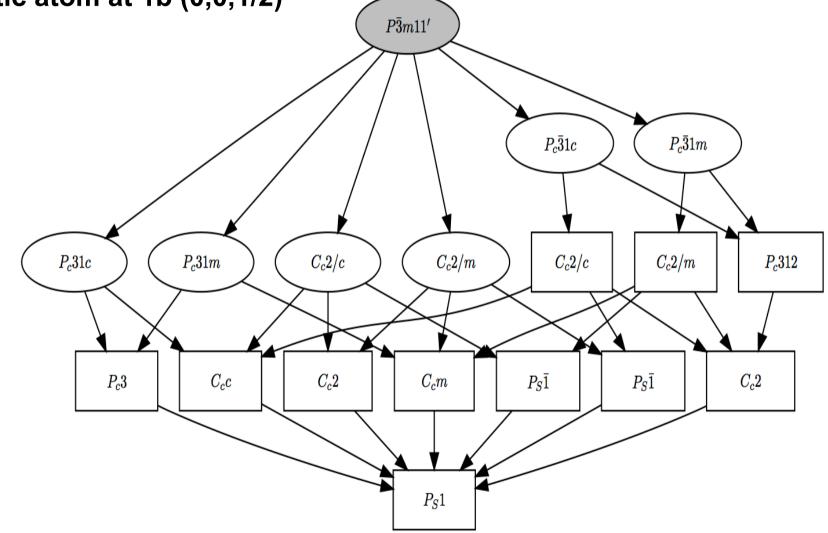
Magnetic Symmetry and Applications				
MGENPOS	General Positions of Magnetic Space Groups			
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups			
МКУЕС 🕰	The k-vector types and Brillouin zones of Magnetic Space Groups			
IDENTIFY MAGNETIC GROUP	Identification of a Magnetic Space Group from a set of generators in an arbitrary setting			
BNS2OG	Transformation of symmetry operations between BNS and OG settings			
mCIF2PCR	Transformation from mCIF to PCR format (FullProf).			
MPOINT	Magnetic Point Group Tables			
MAGNEXT	Extinction Rules of Magnetic Space Groups			
MAXMAGN	Maximal magnetic space groups for a given space group and a propagation vector			
AGMODELIZE	Magnetic structure models for any given magnetic symmetry			
STRCONVERT	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available			
SUBGROUPSMAG	Magnetic subgroups consistent with some given propagation vector(s) or a supercell			
MAGNDATA	A collection of magnetic structures with portable cif-type files			
MVISUALIZE	3D Visualization of magnetic structures with Jmol			
	Symmetry-adapted form of crystal tensors in magnetic phases			
MAGNETIC REP.	Decomposition of the magnetic representation into irreps			
Get_mirreps	Irreps and order parameters in a paramagnetic space group- magnetic subgroup phase transition			

For non-maximal symmetries and/or more than one propagation vector

k-SUBGROUPSMAG & MAGMODELIZE

k-Subgroupsmag: Magnetic subgroups compatible with some given propagation vector(s) or a supercell.

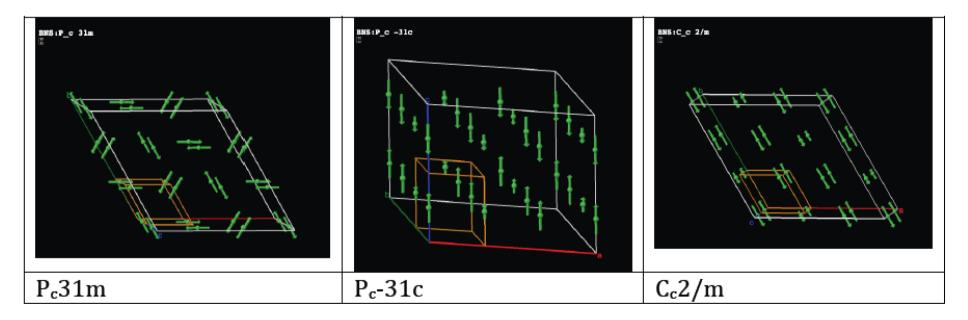
Enter the serial number of the space group of the parent choose it paramagnetic phase: Choose an alternative magnetic group Introduce the magnetic wave vector(s) Alternatively give the basis vectors of the supercell (Give the components of the wave vectors in a fractional form, n/m) k_{1x} k_{1v} k_{1z} Show the independent vectors of the star Choose the whole star of the propagation vector More wave-vectors needed Optionally give also non-magnetic modulation wave-vectors Include the subgroups compatible with intermediate cells. (It is not applied when only the maximal subgroups are calculated) Optional: refine further the subgroups of the output giving the Wyckoff positions of the atoms Give the Wyckoff positions Wyckoff


called by the refinement program **GSAS-II** through an internal link in order to obtain all possible alternative symmetries for a given set of propagation vectors.

k-SUBGROUPSMAG is

□ Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order parameter).

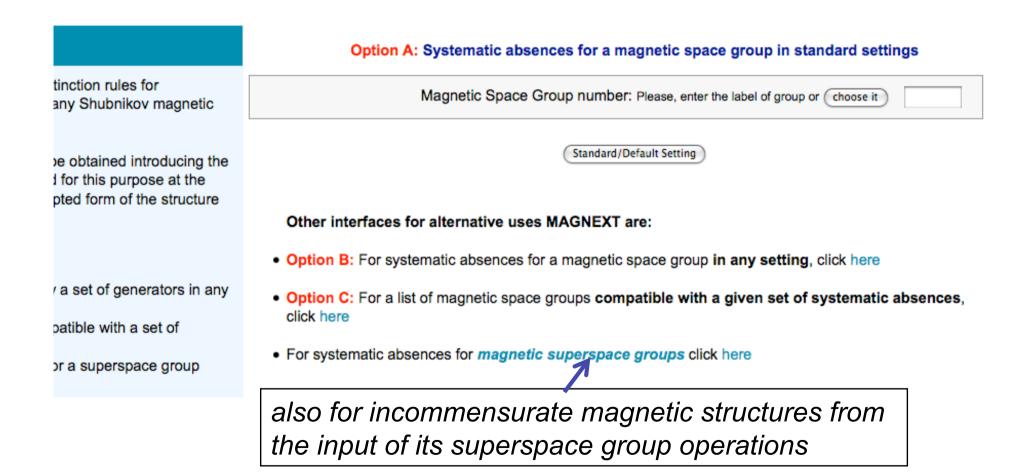
k-SUBGROUPSMAG


Possible magnetic symmetries for a magnetic phase with parent space group P-3m1, propagation vector (1/3,1/3,1/2) and magnetic atom at 1b (0,0,1/2)

k-SUBGROUPSMAG & MAGMODELIZE

Models for each possible MSG can be constructed and magCIF files can be downloaded to use in other programs (refinement, visualization, etc.)

Some of the possible magnetic structures for parent space group P-3m1 propagation vector (1/3,1/3,1/2) and magnetic atom at 1b (0,0,1/2):



(obtained with MVISUALIZE (Jmol))

MAGNEXT: Magnetic diffraction systematic absences

Magnetic Symmetry and Applications				
MGENPOS	General Positions of Magnetic Space Groups			
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups			
	The k-vector types and Brillouin zones of Magnetic Space Groups			
IDENTIFY MAGNETIC GROUP	Identification of a Magnetic Space Group from a set of generators in an arbitrary setting			
BNS2OG	Transformation of symmetry operations between BNS and OG settings			
mCIF2PCR	Transformation from mCIF to PCR format (FullProf).			
MPOINT	Magnetic Point Group Tables			
MAGNEXT	Extinction Rules of Magnetic Space Groups			
MAXMAGN	Maximal magnetic space groups for a given space group and a propagation vector			
MAGMODELIZE	Magnetic structure models for any given magnetic symmetry			
STRCONVERT	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available)			
k-SUBGROUPSMAG	Magnetic subgroups consistent with some given propagation vector(s) or a supercell			
MAGNDATA	A collection of magnetic structures with portable cif-type files			
MVISUALIZE	3D Visualization of magnetic structures with Jmol			
	Symmetry-adapted form of crystal tensors in magnetic phases			
MAGNETIC REP.	Decomposition of the magnetic representation into irreps			
Get_mirreps	Irreps and order parameters in a paramagnetic space group- magnetic subgroup phase transition			

MAGNEXT: Magnetic Systematic Absences

MAGNEXT: partial ouput example

Magnetic diffraction Systematic Absences for the group *P6*₃'/*m*' (#176.147)

For this space group, BNS and OG settings coincide. Its label in the OG setting is given as: P6₃'/m' (#176.5.1378)

Values of h, k, l:	h integer, l	This systematic extinction does not necessarily means		
Systematic absences for special reflections:			that atomic moments are along c !!!!	
Diffraction vector type: (0	0 I) ->	Systematic absence:	l any	
For $1 = 1$:	I = 0	F = (0, 0, Fz)		
For $1 = 2$:	I = 0	F = (0, 0, 0)		

[Show form of structure factor for every type of reflection]

Go to the list of the General Positions of the Group $P6_3'/m'$ (#176.147) [OG: $P6_3'/m'$ (#176.5.1378)] Go to the list of the Wyckoff Positions of the Group $P6_3'/m'$ (#176.147) [OG: $P6_3'/m'$ (#176.5.1378)]

[Show systematic absences in a different setting]

Wyckoff Positions of the Group P6₃ //m' (#176.147)

For this space group, BNS and OG settings coincide. Its label in the OG setting is given as: P6₃'/m' (#176.5.1378)

Multiplicity	Wyckoff letter	Coordinates
12	i	$\begin{array}{ll} (x,y,z \mid m_x,m_y,m_z) & (x-y,x,z+1/2 \mid -m_x+m_y,-m_x,-m_z) \\ (-y,x-y,z \mid -m_y,m_x-m_y,m_z) & (-x,-y,z+1/2 \mid m_x,m_y,-m_z) \\ (-x+y,-x,z \mid -m_x+m_y,-m_x,m_z) & (y,-x+y,z+1/2 \mid -m_y,m_x-m_y,-m_z) \\ (-x,-y,-z \mid m_x,m_y,m_z) & (-x+y,-x,-z+1/2 \mid -m_x+m_y,-m_x,-m_z) \\ (y,-x+y,-z \mid -m_y,m_x-m_y,m_z) & (x,y,-z+1/2 \mid m_x,m_y,-m_z) \\ (x-y,x,-z \mid -m_x+m_y,-m_x,m_z) & (-y,x-y,-z+1/2 \mid -m_y,m_x-m_y,-m_z) \end{array}$
6	h	$\begin{array}{ll} (x,y,1/4 \mid m_x,m_y,0) & (x-y,x,3/4 \mid -m_x+m_y,-m_x,0) \\ (-y,x-y,1/4 \mid -m_y,m_x-m_y,0) & (-x,-y,3/4 \mid m_x,m_y,0) \\ (-x+y,-x,1/4 \mid -m_x+m_y,-m_x,0) & (y,-x+y,3/4 \mid -m_y,m_x-m_y,0) \end{array}$
6	g	$\begin{array}{ll} (1/2,0,0 \mid m_x,m_y,m_z) & (1/2,1/2,1/2 \mid -m_x+m_y,-m_x,-m_z) \\ (0,1/2,0 \mid -m_y,m_x-m_y,m_z) & (1/2,0,1/2 \mid m_x,m_y,-m_z) \\ (1/2,1/2,0 \mid -m_x+m_y,-m_x,m_z) & (0,1/2,1/2 \mid -m_y,m_x-m_y,-m_z) \end{array}$
4	f	$\begin{array}{ll} (1/3,2/3,z \mid 0,0,m_z) & (2/3,1/3,z+1/2 \mid 0,0,-m_z) \\ (2/3,1/3,-z \mid 0,0,m_z) & (1/3,2/3,-z+1/2 \mid 0,0,-m_z) \end{array}$
4	е	$\begin{array}{ll} (0,0,z \mid 0,0,m_z) & (0,0,z+1/2 \mid 0,0,-m_z) \\ (0,0,-z \mid 0,0,m_z) & (0,0,-z+1/2 \mid 0,0,-m_z) \end{array}$
2	d	(2/3,1/3,1/4 0,0,0) (1/3,2/3,3/4 0,0,0)
2	С	(1/3,2/3,1/4 0,0,0) (2/3,1/3,3/4 0,0,0)
2	b	(0,0,0 0,0,m _z) (0,0,1/2 0,0,-m _z)
2	а	(0,0,1/4 0,0,0) (0,0,3/4 0,0,0)

Absence:

(0,0,I) absent for all I

Atoms can have moment components on the xy plane **MAGNEXT** can be used to discriminate between two possible models:

Ba₅Co₅ClO₁₃ nuclear/positional reflection condition: (2h,-h,l) l=2n (magnetic sites: 2a, 4e, 4f. all (0,0,m_z) **Magnetic diffraction:** Reflection (2, -1, 3)pure magnetic (2h,-h,l) P6₃'/m' m' c (194.268): absent l even P6₃/m' m' c (194.270): absent I odd

(spins are symmetry restricted to be along c in both groups)

Tutorial to follow :

Tutorial_MAXMAGN_ HoMnO3

Magnetic Symmetry and Applications			
MGENPOS	General Positions of Magnetic Space Groups		
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups		
МКУЕС 🕰	The k-vector types and Brillouin zones of Magnetic Space Groups		
IDENTIFY MAGNETIC GROUP	Identification of a Magnetic Space Group from a set of generators in an arbitrary setting		
BNS2OG	Transformation of symmetry operations between BNS and OG settings		
mCIF2PCR	Transformation from mCIF to PCR format (FullProf).		
MPOINT	Magnetic Point Group Tables		
MAGNEXT	Extinction Rules of Magnetic Space Groups		
MAXMAGN	Maximal magnetic space groups for a given space group and a propagation vector		
MAGMODELIZE	Magnetic structure models for any given magnetic symmetry		
STRCONVERT	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available)		
k-SUBGROUPSMAG	Magnetic subgroups consistent with some given propagation vector(s) or a supercell		
MAGNDATA	A collection of magnetic structures with portable cif-type files		
MVISUALIZE	3D Visualization of magnetic structures with Jmol		
	Symmetry-adapted form of crystal tensors in magnetic phases		
MAGNETIC REP.	Decomposition of the magnetic representation into irreps		
Get_mirreps	Irreps and order parameters in a paramagnetic space group- magnetic subgroup phase transition		

Tutorial to follow:

	Μ	lagnetic Symmetry and Applications
	MGENPOS MWYCKPOS MKVEC A IDENTIFY MAGNETIC GROUP BNS2OG mCIF2PCR	General Positions of Magnetic Space Groups Wyckoff Positions of Magnetic Space Groups The k-vector types and Brillouin zones of Magnetic Space Groups Identification of a Magnetic Space Group from a set of generators in an arbitrary setting Transformation of symmetry operations between BNS and OG settings Transformation from mCIF to PCR format (FullProf).
	MPOINT MAGNEXT MAXMAGN MAGMODELIZE	Magnetic Point Group Tables Extinction Rules of Magnetic Space Groups Maximal magnetic space groups for a given space group and a propagation vector Magnetic structure models for any given magnetic symmetry
Tutorial_magnetic_sect ion_BCS_2	STRCONVERT k-SUBGROUPSMAG	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available) Magnetic subgroups consistent with some given propagation vector(s) or a supercell
Only section 2.1	MAGNDATA MVISUALIZE MTENSOR 🕰 MAGNETIC REP.	A collection of magnetic structures with portable cif-type files 3D Visualization of magnetic structures with Jmol Symmetry-adapted form of crystal tensors in magnetic phases Decomposition of the magnetic representation into irreps
	Get_mirreps	Irreps and order parameters in a paramagnetic space group- magnetic subgroup phase transition