

Analysis of distorted structures in the Bilbao Crystallographic Server. The program AMPLIMODES

J. Manuel Perez-Mato Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN

A distorted structure: Leucite KAISi₂O₆

 $I4_{1}/a$

Palmer et. (Amer. Miner. 82 (1997) 16

A distorted structure is **pseudosymmetric** for a supergroup of its space group

Problem 1: Is my structure with space group F a distorted structure?

We should search for a structure with space group G (supergroup of F) such that:

Structure G = Structure F + small (symmetry-breaking) distortion

How do we describe a distorted structure?

The natural language to describe a symmetry break/phase transition or a distorted structure in general is the one of <u>collective</u> **symmetry-adapted** modes (Landau Theory)

IRREPS of G

Distorted Structure = High-symmetry Struct + "frozen" symmetry-breaking distortion modes

Description of a displacive "mode": u(atoms) = Q e polarization vector amplitude $e = (\begin{array}{c} \rightarrow \\ e_1 \\ e_2 \\ e_3 \\ e_4 \end{array}) \rightarrow (\begin{array}{c} \rightarrow \\ e_3 \\ e_4 \end{array})$ $|\dot{e}_1|^2 + |\dot{e}_2|^2 + |\dot{e}_3|^2 + 2 |\dot{e}_4|^2 = 1$ normalization: (within a unit cell) displacive type: local variable =atomic displacements distortion modes: order-disorder type: local variable: site occupation probabilities magnetic type: local variable: atomic magnetic moments

distortion mode = Amplitude * polarization vector

They transform according to irreps of the point group of the molecule

Mode frequency can be measured or calculated.

Mean value of mode normal coordinate zero: $\langle \mathbf{Q}_{i}^{dyn} \rangle = 0$

Energy as a function of the normal mode coordinate:

Symmetry of vibrational modes: irreducible representations of the space group

irrep modes....

Modes in the description of the statics (STRUCTURE) of a distorted phase:

(Free) Energy around the high-symmetry non-distorted configuration:

Energy as a function of the

amplitude of an unstable Q:

Ab-initio calculation of static normal modes in the high-symmetry configuration

М Х ΡX Ν 140 0.4 0.6 0.8 1 1.2 1.4 120 100 **κ<0** $\kappa_{i}(k)$ Ε 20 -17.5 0 -20 k Symmetry of distortion modes: irreducible representations (group theory) κ_i(k)<0

The Mechanical Representation: an arbitrary displacive distortion (set of atomic displacements) transforms according to a representation of the parent symmetry group

 d_1, \dots, d_n orthonormal basis of displacive modes

The Mechanical Representation is REDUCIBLE into irreps

Decomposition of the Mechanical Representation into IRREPS

		Representations and Applications
IVIECHANICAL REP:		Point and Space Groups
	REPRES	Space Groups Representations
	Representations PG	Irreducible representations of the crystallographic Point Groups
	Representations SG	Irreducible representations of the Space Groups
	Get_irreps	Irreps and order parameters in a space group-subgroup phase transition
	DIRPRO	Direct Products of Space Group Irreducible Representations
	CORREL	Correlations relations between the irreducible representations of a group-subgroup pair
	POINT	Point Group Tables
	SITESYM	Site-symmetry induced representations of Space Groups
	COMPATIBILITY RELATIONS	Compatibility relations between the irreducible representations of a space group
	MECHANICAL REP.	Decomposition of the mechanical representation into irreps

Example: Perovkite structure (G=Pm-3m)

Wave-vectors of the star (1 vector):

GM:(0,0,0)

Wyckoff position	Decomposition into irreps
3c:(0,1/2,1/2)	2 GM4-(3) ⊕ GM5-(3)
1b:(1/2,1/2,1/2)	GM4-(3)
1a:(0,0,0)	GM4-(3)

In parentheses the dimensions of the irreducible representations of the little group of k

The mode description of a distortion is simply a change of basis:

Atomic displacements from positions in	
the parent structure :	Mode basis (orthonormal) :
u1x e x1	$\epsilon 1 = a_{11} e^{x1} + a_{12} e^{y1} + a_{13} e^{x1} \dots a_{13N} e^{zN}$
u1y e y1	$\epsilon 2 = a_{21} e_{x1} + a_{22} e_{y1} + a_{23} e_{x1} \dots a_{23} N e_{zN}$
u1z e z1	$\epsilon 3 = a_{31} e_{x1} + a_{32} e_{y1} + a_{33} e_{x1} \dots a_{33N} e_{zN}$
u2x e x2	
u2y e y2 Atoms 1,,N	
u2z e z2	$\epsilon 3N = a_{3N1}e_{x1} + a_{3N2}e_{y1} + a_{3N3}e_{x1} \dots a_{3N3N}e_{zN}$
	(3N x 3N) matrix transformation
uNx e xN	Distortion:
uNy e yN	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
uNz e zN	$U = (01 \ 02 \ 03 \ 03N)$
Distortion: U = (u1x, u1y, u1z,,uNx, uNy, uNz) –	3N parameters (mode amplitudes) (collective coordinates)
3N parameters	

Collective irrep modes is the natural language to describe the structure of distorted phases:

Hierarchy of modes:

Von Neumann principle:

all modes compatible with the symmetry will be present in the total distortion

But not all with the same weight!:

primary mode(s): unstable

the origin of the distortion

secondary modes: induced by the presence of the primary one(s)

The natural language to describe a symmetry break/phase transition or a distorted structure in general is the one of <u>collective</u> **symmetry-adapted** modes (Landau Theory)

IRREPS of G

primary distortion mode : order parameter

Unstable collective degree of freedom:

We can compare the <u>amplitudes</u> of different frozen distortion modes:

Q and Q' have the same dimensions and their values can be compared

Hierarchy of modes

Phase Transition / Symmetry break / Order Parameter

Possible Space Groups (SGs) for a single irrep:

Problem 2a: We know the high symmetry and we want to know the possible symmetries of the distorted phase knowing primary irrep

Problem 2b: We know the high symmetry and we want to know the possible symmetries of the distorted phase only knowing its unit cell

 $G \longrightarrow ?$

possible space groups for the known unit cell?

Group-Subgroup Relations of Space Groups

SUBGROUPGRAPH	Lattice of Maximal Subgroups
HERMANN	Distribution of subgroups in conjugated classes
COSETS	Coset decomposition for a group-subgroup pair
WYCKSPLIT	The splitting of the Wyckoff Positions
MINSUP	Minimal Supergroups of Space Groups
SUPERGROUPS	Supergroups of Space Groups
CELLSUB	List of subgroups for a given k-index.
CELLSUPER	List of supergroups for a given k-index.
NONCHAR	Non Characteristic orbits.
COMMONSUBS	Common Subgroups of Space Groups
COMMONSUPER	Common Supergroups of Two Space Groups
INDEX	Index of a group subgroup pair
SUBGROUPS	Subgroups of a space group consistent with some given supercell, propagation vector(s) or irreducible representation(s) $% \left({{{\bf{s}}_{i}}} \right) = {{\bf{s}}_{i}} \right)$

Program SUBGROUPS

I4/mcm (**a**+**b**, -**a**+**b**, 2**c**;0,0,0)

I4/mcm (**a+b**, -**a+b**, 2**c**; ½,½,½)

Pm-3m

Possible subgroups of Pm-3m with a lattice givenby a unit cell I (bcc) (a-b,a+b,2c) :

(a-b,a+b,2c) :

subgroup index

N	Group Symbol	Tra	ansf	orm	atior	n matrix	Group-Subgroup index
1	<i>Fm</i> 3c (No. 226)	(2 0 0	0 2 0	0 0 2	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	2=2x1
2	<i>Fm</i> 3c (No. 226)	(2 0 0	0 2 0	0 0 2	$\begin{pmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2 \end{pmatrix}$	2=2x1
3	<i>Fm</i> 3 <i>m</i> (No. 225)	(2 0 0	0 2 0	0 0 2	$^{1/2}_{1/2}_{1/2} \bigg)$	2=2x1
4	<i>Fm</i> 3 <i>m</i> (No. 225)	(2 0 0	0 2 0	0 0 2	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	2=2x1
5	<i>I4/mcm</i> (No. 140)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	6=2x3
6	<i>I4/mcm</i> (No. 140)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$	6=2x3
7	<i>l4/mmm</i> (No. 139)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 0\\ 1/2\\ 0 \end{pmatrix}$	6=2x3
8	<i>l4/mmm</i> (No. 139)	(1 0 1	-1 0 1	0 -2 0	$\begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix}$	6=2x3
9	<i>Imma</i> (No. 74)	(0 0 2	-1 1 0	-1 -1 0	$\begin{pmatrix} 0\\ 1/2\\ 0 \end{pmatrix}$	12=2x6
10	<i>Imma</i> (No. 74)	(0 0 2	1 1 0	-1 1 0	$\begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix}$	12=2x6

Problem 3: We know the structures and space group of both the parent and the distorted structure but we do not know the transformation identifying the low symmetry group as a subgroup of the parent space group

transformation relating the unit cells and origin?

	Structure Utilities			
	CELLTRAN	Transform Unit Cells		
	STRAIN	Strain Tensor Calculation		
	WPASSIGN	Assignment of Wyckoff Positions		
	TRANSTRU	Transform structures.		
Program STRUCTURE	SETSTRU	Alternative Settings for a given Crystal Structure		
DELATIONS:	EQUIVSTRU	Equivalent Descriptions for a given Crystal Structure		
KLLATIONS.	STRCONVERT	Convert & Edit Structure Data (supports the CIF, mCIF, VESTA, VASP formats with magnetic information where available)		
	VISUALIZE	Visualize structures using Jmol		
	COMPSTRU	Comparison of Crystal Structures with the same Symmetry		
	STRUCTURE RELATIONS	Evaluation of structure relationships [transformation matrix] between group-subgroup related phases		
	PSEUDOLATTICE	Pseudosymmetry of a lattice and compatible supergroups		

A distorted structure: Leucite KAISi₂O₆

G = Ia-3d

 $F = I4_1/a (a,b,c;0,1/2,1/2)$

From SRUCTURE RELATIONS:

 $I4_1/a$

230 13.55038 13.55038 13.55038 90 90 90 3

K	1	16b	0.875000	0.375000	0.125000
т	1	48g	0.588100	0.375000	0.161900
0	1	96h	0.633000	0.280900	0.103800

Low Symmetry Structure

88 12.99517 12.99517 13.76451 90 90 90 10 Κ 16f 0.366300 0.365400 0.117100 1 т 1 16f 0.058200 0.396700 0.165400 т 2 16f 0.168500 0.612400 0.128000 т 3 16f 0.393300 0.640600 0.086300 0 1 16f 0.130800 0.313600 0.111100 0 2 16f 0.092700 0.510500 0.131000 0 3 16f 0.145500 0.679000 0.226900 0 4 16f 0.134200 0.683900 0.035800 0 5 16f 0.289200 0.577300 0.121200 6 0 16f 0.484100 0.617500 0.166500

[Index: 6] (Calculated formula units -- High Sym. Structure: 160; Low Sym. Structure: 160)

Transformation Matrix (P,p): (a,b,c;0,1/2,1/2)

Matrix form:

	/	1	0	0	0
$(\mathbf{P} \mathbf{n}) =$	(0	1	0	1/2
(F , p)-	l	0	0	1	1/2

Multistability:

Origin of ferroic properties: multistability

Ferroic structure:

"distorted" structure with respect to a configuration

with a higher point group symmetry

Ferroic domains:

equivalent crystal tensors with different orientations

related by lost point group operations

Ferroic properties:

require the symmetry break of the point-group

symmetry between distorted and undistorted configurations

FERROIC SPECIES:

The characterization of the ferroic properties requires to know the two point group symmetries: the one of the ferroic structure, and also of the related high-symmetry configuration. EXAMPLE: mmmEmm2

Some examples of ferroic species and corresponding switchable spontaneous crystal tensor quantities

Phase Transition / Symmetry break / Order Parameter

Multistability: enumeration of distinct domains:

different rotational parts:

Number of distinct ferroic states = $Order of P_G$ Order of P_F

Two levels of knowledge of the symmetry of a distorted phase:

1) pair of points groups: (P_G, P_F) (Ferroic species)

2) space group G + active irrep(s) + plus direction order parameter(s) \overline{Q}

Leucite KAlSi₂O₆

Ia-3d

max. atomic displ. : 1.04Å

 $I4_{1}/a$

Ferroic species: m-3m F 4/m

	m-3m	F	R3m
strain	0030 030 300		
polariz.	(0,0,0)		(0,0,0)
			ferroelastic (improper)

Ferroic species: m-3mF4/m

Program TENSOR

Information about the selected tensor

- 3 rd rank Magneto-optical tensor (Faraday effect) F_{ijk}
- Axial tensor invariant under time-reversal symmetry operation
- Defining equation: $\Delta \beta_{ij} = F_{ijk}H_k$
- Relates Magnetic field H with the antisymmetric part of the Dielectric impermeability tensor variation $\Delta\beta_{ii}$.
- Pure imaginary in non-dissipative media.
- Intrinsic symmetry symbol: e{V²}V
- Symmetrized indexes due to intrinsic symmetry:

• F_{ijk} = -F_{jik}

Faraday Effect:

Table of tensor components

m-3m

		1	2	3
	11	0	0	0
	12	0	0	F ₁₂₃
	13	0	-F ₁₂₃	0
	21	0	0	-F ₁₂₃
U.	22	0	0	0
	23	F ₁₂₃	0	0
	31	0	F ₁₂₃	0
	32	-F ₁₂₃	0	0
	33	0	0	0

Number of independent coefficients: 1

Solid State Theory Applications

NEUTRON	Neutron Scattering Selection Rules
SYMMODES	Primary and Secondary Modes for a Group - Subgroup pair
AMPLIMODES	Symmetry Mode Analysis
PSEUDO	Pseudosymmetry Search in a Structure
DOPE	Degree of Pseudosymmetry Estimation
TRANPATH	Transition Paths (Group not subgroup relations)
TENSOR 🛆	Symmetry-adapted form of crystal tensors
Check Topological Mat 🖄	Check if a given material is topological or not

Table of tensor components

	Fijk				
			1	2	3
A /		11	0	0	0
4/m		12	0	0	F ₁₂₃
		13	F ₁₃₁	F ₁₃₂	0
	ij	21	0	0	-F ₁₂₃
		22	0	0	0
		23	-F ₁₃₂	F ₁₃₁	0
		31	-F ₁₃₁	-F ₁₃₂	0
		32	F ₁₃₂	-F ₁₃₁	0
		33	0	0	0

Number of independent coefficients: 3

Problem 4: We know the symmetry break (not necessarily the structures) and we want to identify the active irreps (primary and secondary ones)

Representations and Applications					
	Point and Space Groups				
EPRES	Space Groups Representations				
epresentations PG	Irreducible representations of the crystallographic Point Groups				
epresentations SG	Irreducible representations of the Space Groups				
et_irreps	Irreps and order parameters in a space group-subgroup phase transition				
IRPRO	Direct Products of Space Group Irreducible Representations				
ORREL	Correlations relations between the irreducible representations of a group-subgroup pair				
OINT	Point Group Tables				
ITESYM	Site-symmetry induced representations of Space Groups				
OMPATIBILITY RELATIONS	Compatibility relations between the irreducible representations of a space group				
ECHANICAL REP.	Decomposition of the mechanical representation into irreps				

A distorted structure: Leucite $KAISi_2O_6$ $Ia-3d \longrightarrow F=I4_1/a (a,b,c;0,1/2,1/2)$ From GET_irreps:

	Group→subgroup	Tra	ansfo	orma	ition	matrix
Input:	<i>la</i> 3d (N. 230)→ <i>l</i> 4 ₁ /a (N. 88)	(1 0 0	0 1 0	0 0 1	$\begin{pmatrix} 1/2 \\ 0 \\ 0 \end{pmatrix}$

Representations and order parameters

Show the graph of isotropy subgroups

k-vectors	irreps and order parameters	isotropy subgroup transformation matrix	link to the irreps
GM: (0,0,0)	GM ₁ +: (a)	<i>la</i> 3d (No. 230) a,b,c;0,0,0	
	GM ₃ +: (a,0)	/4 ₁ / <i>acd</i> (No. 142) a,b,c;0,0,0	matrices of the irreps
	GM ₄ ⁺ : (0,0,a)	/4 ₁ / <i>a</i> (No. 88) a,b,c;1/2,0,0	

Leucite $KAISi_2O_6$

 $I4_1/a$

Symmetry mode decomposition of the distortion?:

How are the distortion modes (polarization vectors) corresponding to irreps GM4+ and GM4+ present in the distorted structure and what are their amplitudes?

Problem 5: We know the symmetry break and we know the structures and we want to decompose the distortion into irrep distortion modes

	Solid State Theory Applications
NEUTRON	Neutron Scattering Selection Rules
SYMMODES	Primary and Secondary Modes for a Group - Subgroup pair
AMPLIMODES	Symmetry Mode Analysis
PSEUDO	Pseudosymmetry Search in a Structure
DOPE	Degree of Pseudosymmetry Estimation
TRANPATH	Transition Paths (Group not subgroup relations)
TENSOR 🛆	Symmetry-adapted form of crystal tensors
Check Topological Mat	Check if a given material is topological or not

Calid State The

 $I4_1/a$

DISTORTION MODES AMPLITUDES VS. TEMPERATURE:

ZTF-FCT Zientzia eta Teknologia Fakultatea Facultad de Ciencia y Tecnología

Using AMPLIMODES

A detailed review of symmetry-mode analysis with many examples:

"Mode crystallography of distorted structure", Acta Cryst. (2010). A66, 558-590 (open access)

lead articles		CrossMark
Acta Crystallographica Section A Foundations of Crystallography	Mode crystallography of distorted structures	
ISSN 0108-7673	J. M. Perez-Mato,* D. Orobengoa and M. I. Aroyo	

A detailed description of the program AMPLIMODES:

"AMPLIMODES: symmetry-mode analysis on the the Bilbao Crystallographic Server", J. Appl. Cryst. (2009). 42, 820-833

research papers	
Journal of Applied Crystallography	AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server
ISSN 0021-8898	
	Danel Orobengoa,* Cesar Capillas, Mois I. Aroyo and J. Manuel Perez-Mato
Received 16 April 2009	
Accepted 16 July 2009	

AMPLIMODES carries out a symmetry-mode analysis of a displacive phase transition. Starting from the experimental structures of the high- and low symmetry phases, the program determines the global structural distortion that relates the two phases. The symmetry modes compatible with the symmetry break are then calculated. Their orthogonality permits the decomposition of the global distortion, obtaining the amplitudes of the different symmetry-adapted distortions present in the structure, as well as their corresponding polarization vectors.

The input of the program consists of:

- The information about the structures of the highand low symmetry phases: Space group number, lattice parameters and relative atomic coordinates of the asymmetric unit.
- The transformation matrix that relates the basis of the two space groups.

AMPLIMODES tutorial: download FullProf tutorial: download VISUALIZING_MODES tutorial: download

NEW: The output of AMPLIMODES (saved as an html file) can now be directly read by Jmol. This Java viewer allows to visualize in 3D in a straightforward manner all distortion modes of the output, with arrows and/or

Commonto	
Structure Data	Examinar No se ha seleccionado ningún archivo.
[in CIF format]	HINT: [The option for a given filename is preferential]
High Symmetry Structure	<pre># Space Group ITA number 221 # Lattice parameters 4.006 4.006 90 90 90 # Number of independent atoms in the asymmetric unit 3 # [atom type] [number] [WP] [x] [y] [z] Ba 1 1a 0.0 0.0 0.0 Ti 1 1b 0.5 0.5 0.5 O 1 3c 0.5 0.0 0.5</pre>
Structure Data	Examinar No se ha seleccionado ningún archivo.
[in CIF format]	HINT: [The option for a given filename is preferential]
Low Symmetry Structure	<pre># Space Group ITA number 38 # Lattice parameters 3.9828 5.6745 5.6916 90 90 90 # Number of independent atoms in the asymmetric unit 4 # [atom type] [number] [WP] [x] [y] [z] Ba 1 2a 0.0 0.0 0 Ti 1 2b 0.5 0.0 0.5170 0 1 2a 0.0 0.0 0.4890 0 2 4e 0.5 0.2561 0.2343</pre>

Tutorial-AMPLIMODES.pdf

Amm2 phase of BaTiO₃

High symmetry structure Pm-3m 221 4.006 4.006 4.006 90 90 90 з вa la 1 0.0 0.0 0 ті ıb 0.5 0.5 0.5 1 3C 0.5 0.0 0.5 0 1 Low symmetry structure Amm2 38 3.9828 5.6745 5.6916 90 90 90 4 4 parameters Bа 1 2a 0.0 0.0 0.0 ті 2b ı 0.5 0.0 0.5170 0 1 2a 0.0 0.0 0.4890 0 2 4e0.5 0.2561 0.2343 Transformation matrix Transf. 0] 1 0 1][-1 0 0] 01[1 0 0]

Transformed high symmetry structure in the subgroup basis

Reference Structure

038	0 5.6653	39 5.665	339 90,000000	90.00000 90.0000	0.0
4					
Ba	1	2a	0.00000	0.000000	0.00000
Ti	1	2b	0.500000	0.000000	0.500000
0	1	4e	0.500000	0.250000	0.250000
0	1_2	2a	0.00000	0.000000	0.500000

Atom pairings and distances

	Atom Mappings							
WP Atom		Atom	Atom Reference Struc.		Low Sym Struc.			
2a	(0,0,z)	Ba1	(0.000000,0.000000,0.000000)	Ba1	(0.000000,0.000000,0.000000)			
2b	(1/2,0,z)	Ti1	(0.500000,0.000000,0.500000)	Ti1	(0.500000,0.000000,0.517000)			
4e	(1/2,y,z)	01	(0.500000,0.250000,0.250000)	02	(0.500000,0.256100,0.234300)			
2a	(0,0,z)	01_2	(0.000000,0.000000,0.500000)	01	(0.000000,0.000000,0.489000)			

WP		A 10 m	Atomic Displacements				
		Atom	u _x	uy	uz	u	
2a	(0,0,z)	Ba1	0.0000	0.0000	0.0000	0.0000	
2b	(1/2,0,z)	Ti1	0.0000	0.0000	0.0170	0.0963	
4e	(1/2,y,z)	01	0.0000	0.0061	-0.0157	0.0954	
2a	(0,0,z)	01_2	0.0000	0.0000	-0.0110	0.0623	

NOTE: u_x , u_y and u_z are given in relative units. |u| is the absolute distance given in Å Maximum atomic displacement in the distortion, Δ : 0.0963 Å Total distortion amplitude: 0.1771 Å

After origin shift

Relative origin shift to eliminate a global displacement: (0.00000, 0.00000, -0.00508)

	Atom Mappings							
WP Atom		Atom	Coordinates in S ₁	Atom	Coordinates in S ₂			
2a	(0,0,z)	Ba1	(0,0,0)	Ba1	(0,0,0.00508)			
2b	(1/2,0,z)	Ti1	(1/2,0,1/2)	Ti1	(1/2,0,0.52208)			
4e	(1/2,y,z)	01	(1/2,1/4,1/4)	02	(1/2,0.25610,0.23938)			
2a	(0,0,z)	01_2	(0,0,1/2)	01	(0,0,0.49408)			

WP			Atomic Distances				
		Atom	u _x	u _y	uz	d	
2a	(0,0,z)	Ba1	0.0000	0.0000	0.0051	0.0288	
2b	(1/2,0,z)	Ti1	0.0000	0.0000	0.0221	0.1251	
4e	(1/2,y,z)	01	0.0000	0.0061	-0.0106	0.0694	
2a	(0,0,z)	01_2	0.0000	0.0000	-0.0059	0.0335	

NOTE: d_x , d_y and d_z are given in relative units. |d| is the absolute distance given in Å Maximum atomic displacement in the distortion, Δ : 0.1251 Å Total distortion amplitude: 0.1650 Å

Symmetry Modes Summary

Atoms	WP	Modes
01	3c	GM4-(2) GM5-(1)
Ti1	1 <i>b</i>	GM4-(1)
Ba1	1a	GM4-(1)

Note: The primary mode is written in bold letters

Summary of Amplitudes

K-ve	ector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0	,0)	GM4-	(a,a,0)	Amm2 (38)	4	0.1649
(0,0	,0)	GM5-	(0,a,-a)	Amm2 (38)	1	0.0056

Global distortion: 0.1650 Å

Normalized Symmetry modes

The modes are normalized to the low symmetry unit cell and are given as relative displacements in this cell.

δz

Irrep GM4-

Atom

GM4- Mode Ba1 1

δx

K-vector: GM = (0.0.0)

GM4- Mode Ti1 1

Ato	m	δχ	δy	δz
Ti	1	0.000000	0.000000	0.176512

Ba1 0.000000 0.000000 0.176512

δy

GM4- Mode O1 1

Atom	δx	δy	δz
01	0.000000	0.062406	0.062406
01_2	0.000000	0.000000	0.124813

GM4- Mode O1 2

Atom	δx	δy	δz
01	0.000000	-0.088256	0.088256
01_2	0.000000	0.000000	0.000000

Irrep GM5-

GM5- Mode O1 1

Atom	δx	δy	δz
01	0.000000	-0.062406	-0.062406
01_2	0.000000	0.000000	0.124813

Virtual structure) with only this symmetry component of the distortion frozen.

Normalized Symmetry modes

The modes are normalized to the low symmetry unit c cell and are given as relative displacements in this cell.

Irrep GM4-

Irrep GM5-

GM5- Mode O1 1

Atom	δx	δy	δz
01	0.000000	-0.062406	-0.062406
01_2	0.000000	0.000000	0.124813

c=5.665339 unit cell of reference structure 2a or 2b atomic site: 1 atom per PRIMITIVE unit cell 0.176512*5.665339 =1

b=c=5.665339 unit cell of reference structure O1 4e atomic site: 2 atoms per PRIMITIVE unit cell O1_2 2a atomic site: 1 atom per PRIMITIVE unit cell [(0.124813*5.665339)² + 2*[(0.062406*5.665339)² + (0.062406*5.665339)²]]^{1/2}= 0.999998

The orthorhombic Amm2 structure of BaTiO₃

(Kwei et al. (1993) neutron-powder 190 K)

Perovskite in Amm2 setting

	δχ	δy	δz
Ba1	0.0	0.0	0.0
Ti1	0.5	0.0	0.5
01	0.5	0.25	0.25
012	0.0	0.0	0.5

polarization vector GM4-

	δx	δy	δz	
Ba1	0.0	0.0000	0.0308	_
Ti1	0.0	0.0000	0.1339	₽
01	0.0	0.0349	-0.0665	
012	0.0	0.0000	-0.0317	

polarization vector GM5-

+

	δx	δy	δz
Ba1	0.0	0.0000	0.0000
Ti1	0.0	0.0000	0.0000
01	0.0	0.0624	0.0624
012	0.0	0.0000	-0.1248

The orthorhombic Amm2 structure of BaTiO₃

(Kwei et al. (1993) neutron-powder 190 K)

С

Mode decomposition of distortion:

Applications of symmetry mode analysis of distorted structures:

- identification of fundamental and marginal degrees of freedom
- reduction of the effective number of crystallographic parameters
- detection of false refinement minima
- quantitative comparison of structures with the same or different space group
- detection of hidden structural correlations (specially for low symmetry distortions)
- systematic characterization of variation of the structure with temperature
- rationalization of phase diagrams and various symmetries in families of compounds.

I4₁/a Palmer et. (Amer. Miner. 82 (1997) 16

Polarization vectors in Leucite

KAlSi₂O₆

Exercise 1 (Tutorial)

Ferroelectric phase of S₂Sn₂P₆

How does the symmetry mode decomposition depends on the parent structure?

Exercise 1: S₂Sn₂P₆

Summary of Amplitudes

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	GM1+	(a)	P2_1/c (14)	15	0.1714
(0,0,0)	GM2-	(a)	Pc (7)	15	0.4883

changing the parent structure:

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	GM1+	(a)	P2_1/c (14)	15	4.1205
(0,0,0)	GM2-	(a)	Pc (7)	15	0.4883

using the option for FullProf (and the "good" parent):

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)		
(0,0,0)	GM1+	(a)	P2_1/c (14)	15	0.1713		
(0,0,0)	GM2-	(a)	Pc (7)	15	0.5372		

Exercise 4 False minimum in the refinement of the structure of BaMnO₃

Summary	of An	nplitude	80K				
K-vector Irrep Direction		Isotropy Subgroup	Dimension	Amplitude (Å)			
(0,0,0)	GM1+	(a)	P6_3/mmc (194)	1	0.03(4)		
(0,0,0)	GM2-	(a)	P6_3mc (186)	3	0.14(6)		
(1/3,1/3,0)	K1	(a,0)	P6_3/mcm (193)	3	0.04(5)		
(1/3,1/3,0)	K3	(a,0)	P6_3cm (185)	2	0.42(6)		

Example 3: BaMnO ₃	- False	e minimum
-------------------------------	---------	-----------

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å) at 80 K	Amplitude (Å) at 1.7 K	dot product polariz. vectors
(0,0,0)	GM1+	(a)	P6_3/mmc	1	0.00(4)	0.02(2)	
(0,0,0)	GM2-	(a)	P6_3mc	3	0.14(6)	0.14(7)	0.996
(1/3,1/3,0)	K1	(a,0)	P6_3/mcm	3	0.04(5)	0.15(3)	-0.90
(1/3,1/3,0)	K3	(a,0)	P6_3cm	2	0.42(6)	0.53(7)	0.9998

Amplitude of one K1 basis mode

AMPLIMODES carries out a symmetry-mode analysis of a displacive phase transition. Starting from the experimental structures of the high- and low symmetry phases, the program determines the global structural distortion that relates the two phases. The symmetry modes compatible with the symmetry break are then calculated. Their orthogonality permits the decomposition of the global distortion, obtaining the amplitudes of the different symmetry-adapted distortions present in the structure, as well as their corresponding polarization vectors.

The input of the program consists of:

- The information about the structures of the highand low symmetry phases: Space group number, lattice parameters and relative atomic coordinates of the asymmetric unit.
- The transformation matrix that relates the basis of the two space groups.

AMPLIMODES tutorial: download

FullProf tutorial: download VISUALIZING MODES tutorial: download

NEW: The output of AMPLIMODES (saved as an html file) can now be directly read by Jmol. This Java viewer allows to visualize in 3D in a straightforward manner all distortion modes of the output, with arrows and/or

Commonto						
Structure Data	Examinar No se ha seleccionado ningún archivo.					
[in CIF format]	HINT: [The option for a given filename is preferential]					
High Symmetry Structure	<pre># Space Group ITA number 221 # Lattice parameters 4.006 4.006 4.006 90 90 90 # Number of independent atoms in the asymmetric unit 3 # [atom type] [number] [WP] [x] [y] [z] Ba 1 1a 0.0 0.0 0.0 Ti 1 1b 0.5 0.5 0.5 0 1 3c 0.5 0.0 0.5 ///</pre>					
Structure Data	Examinar No se ha seleccionado ningún archivo.					
[in CIF format]	HINT: [The option for a given filename is preferential]					
Low Symmetry Structure	<pre># Space Group ITA number 38 # Lattice parameters 3.9828 5.6745 5.6916 90 90 90 # Number of independent atoms in the asymmetric unit 4 # [atom type] [number] [WP] [x] [y] [z] Ba 1 2a 0.0 0.0 0 Ti 1 2b 0.5 0.0 0.5170 0 1 2a 0.0 0.0 0.4890 0 2 4e 0.5 0.2561 0.2343</pre>					

Tutorial_VISUALIZING_MODES.pdf

Sequence of transitions in SrZrO₃

20 C

Sequence of transitions in SrZrO₃

Temperature variation:

modes polarization vectors:

SrZrO3 parent 221 4.084 4.084 4.084 90 90 90 3 Sr 1 1a 0.000000 0.000000 0.000000 Zr 1 1b 0.500000 0.500000 0.500000 O 1 3c 0.500000 0.000000 0.500000 # SrZrO3 Pnma phase 62 5.8206 8.1949 5.8045 90 90 90 4 Sr 1 4c 0.524000 0.250000 0.004000 Zr 1 4a 0.000000 0.000000 0.000000 O 1 4c -0.013000 0.250000 -0.069000 O 2 8d 0.284000 0.036000 0.215000

Mode decomposition vs. ab-initio calculations

SrAl₂O₄

$$P6_322 \longrightarrow P2_1$$

(Larsson et al. 2008)

two different displacive instabilities:

Comparison of mode decomposition of experimental and ab-initio structures

Amplitudes and dot products of polarization vectors :

irrep	M ₂ -1q		Γ ₆		M ₃ -1q		Γ_5		Γ_4	
dim.	12		7		11		7		3	
	Amp.	prod.	Amp.	prod.	Amp.	prod.	Amp.	prod.	Amp.	prod.
Exp. Struct.	1.70		1.39		0.57		0.32		0.02	
ab-initio	1.81	0.998	1.35	0.9997	0.57	0.997	0.24	0.96	0.03	0.63

Use of mode coordinates in the structure refinement, instead of the individual atomic coordinates?

One expects:

- a natural hierarchy of parameters
- less correlations with atomic (thermal) displacement parametes
- minimize correlations

