

# CRYSTALLOGRAPHY ONLINE Workshop

on the use and applications of the structural and magnetic tools of the

**BILBAO CRYSTALLOGRAPHIC SERVER** 

Leioa, 27 June -1 July 2022

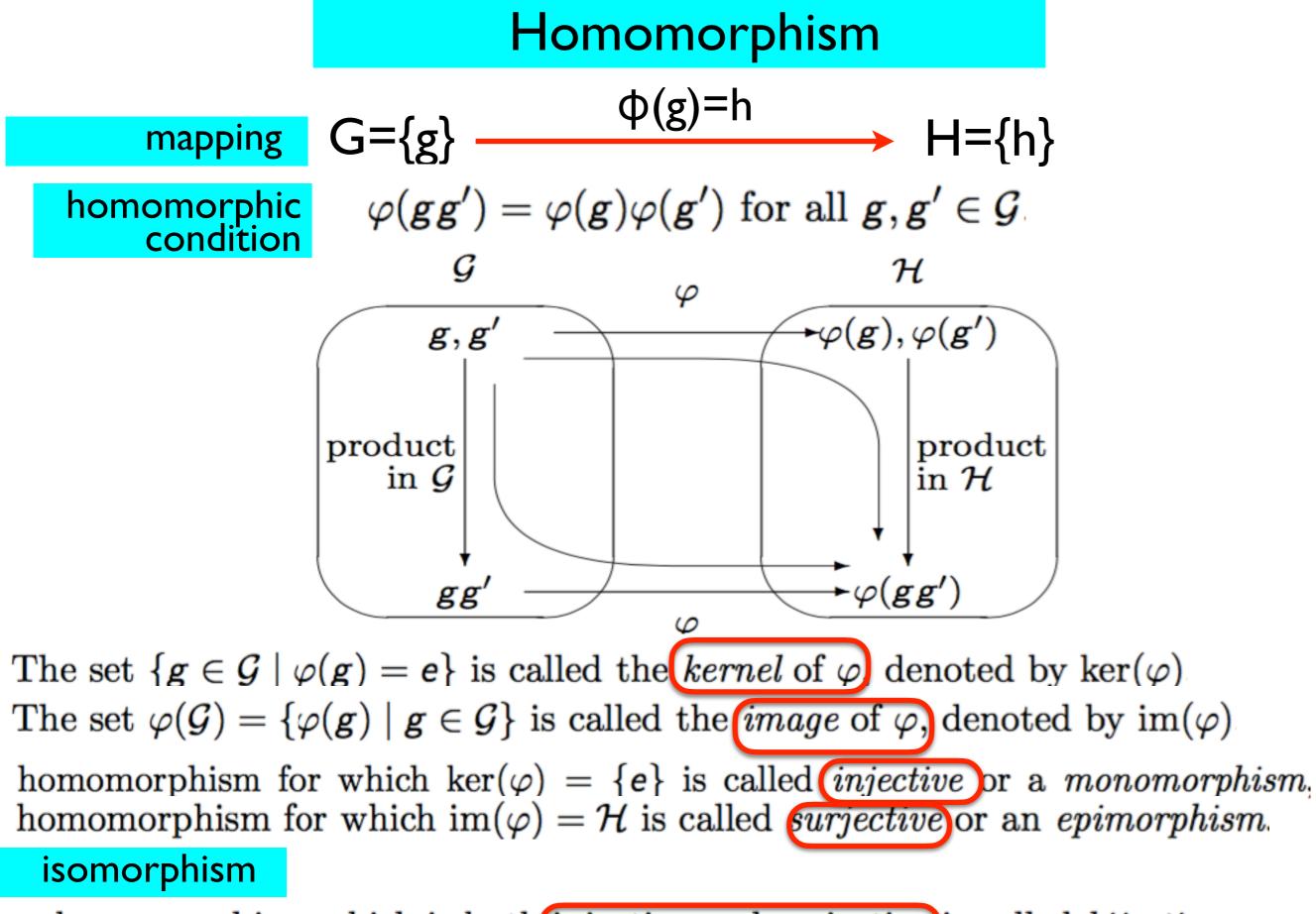
# REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

# GENERAL INTRODUCTION

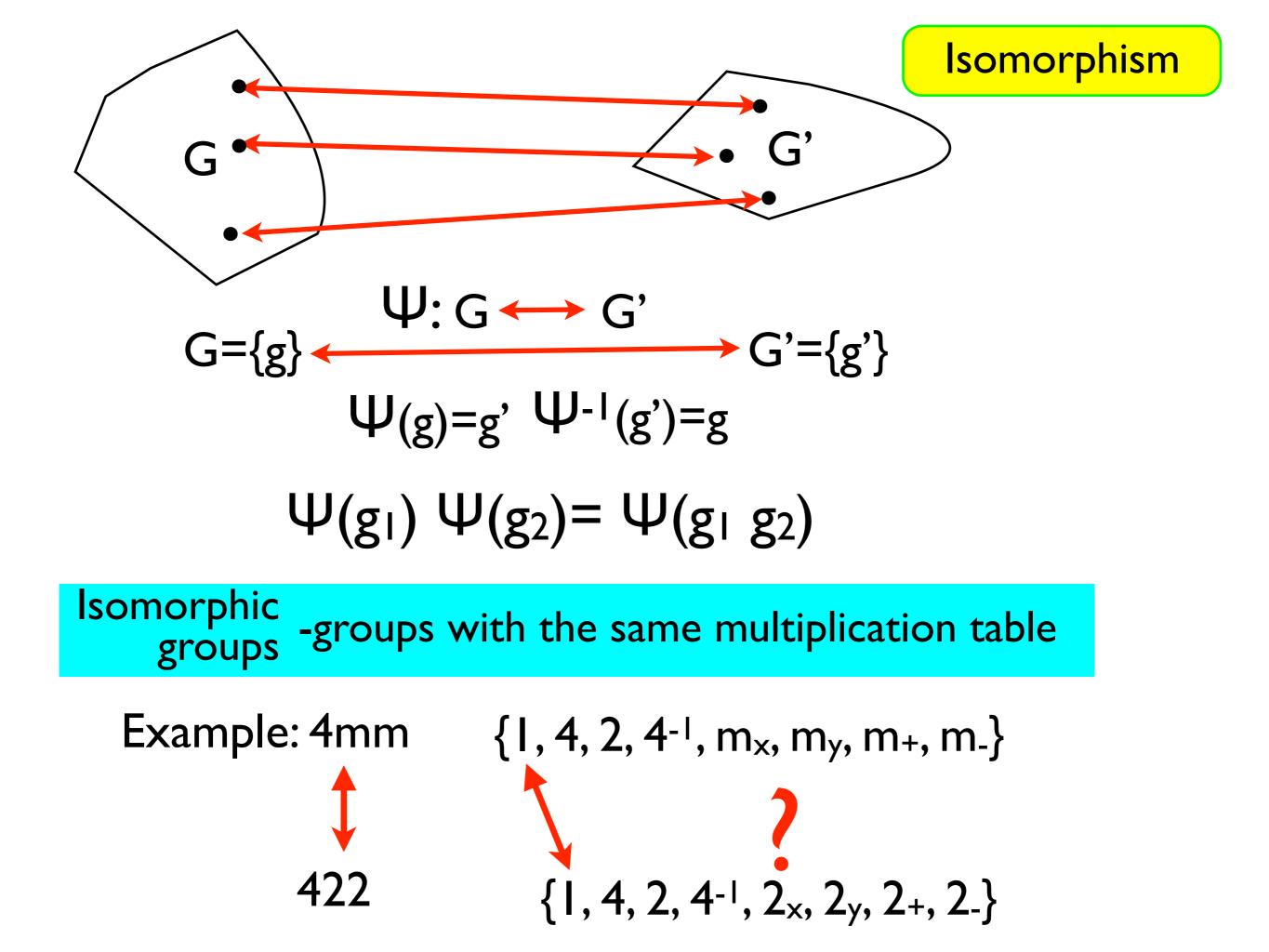
## Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

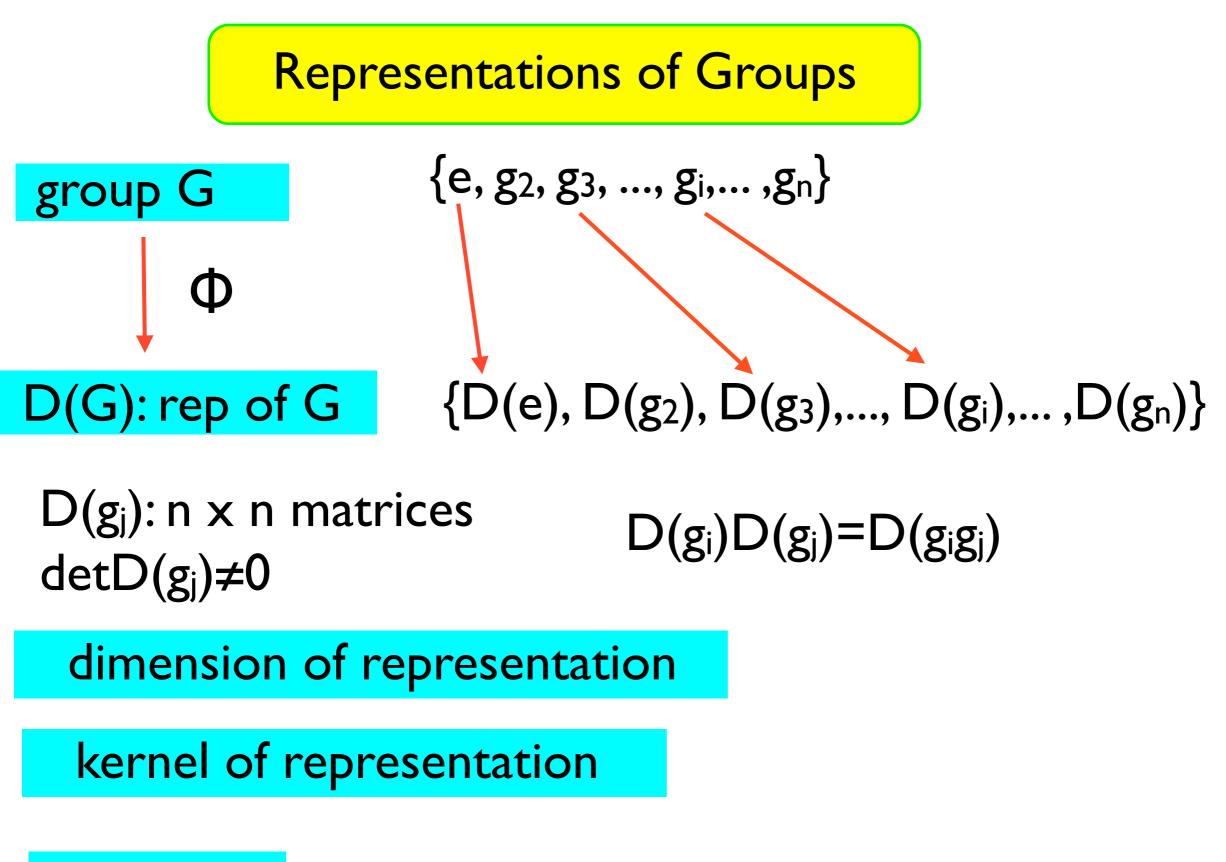


Universidad Euskal Herriko del País Vasco Unibertsitatea



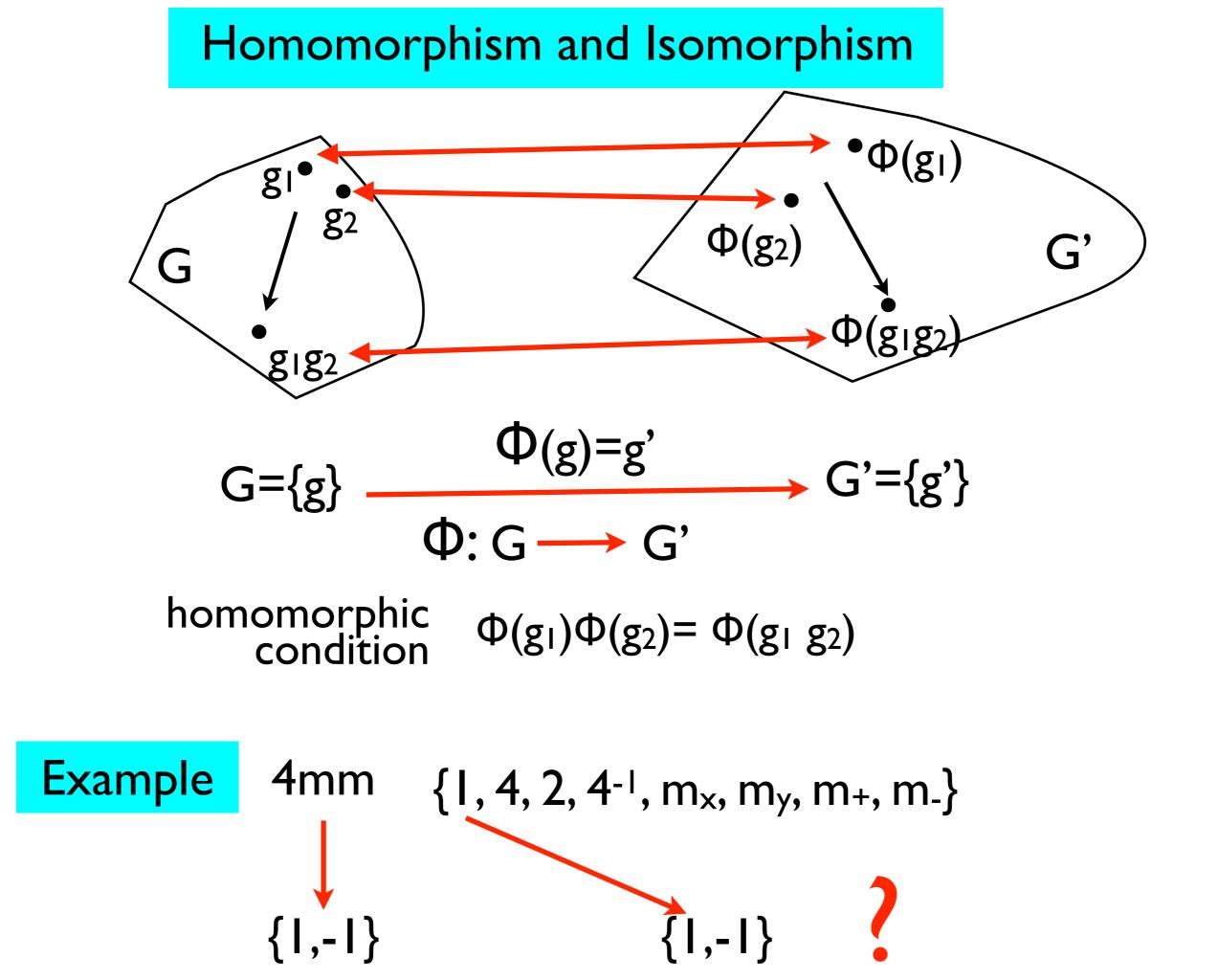
homomorphism which is both injective and surjective is called *bijective* 

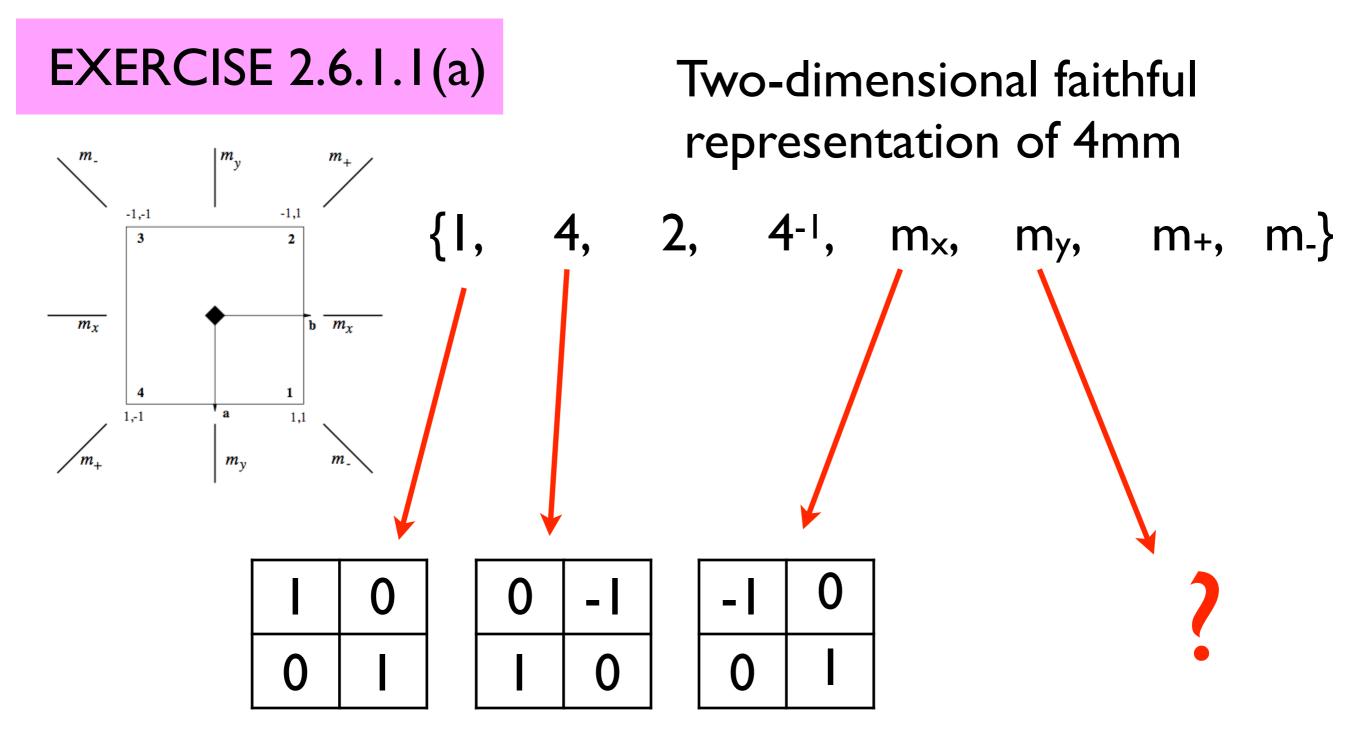




trivial (identity) representation faithful representation

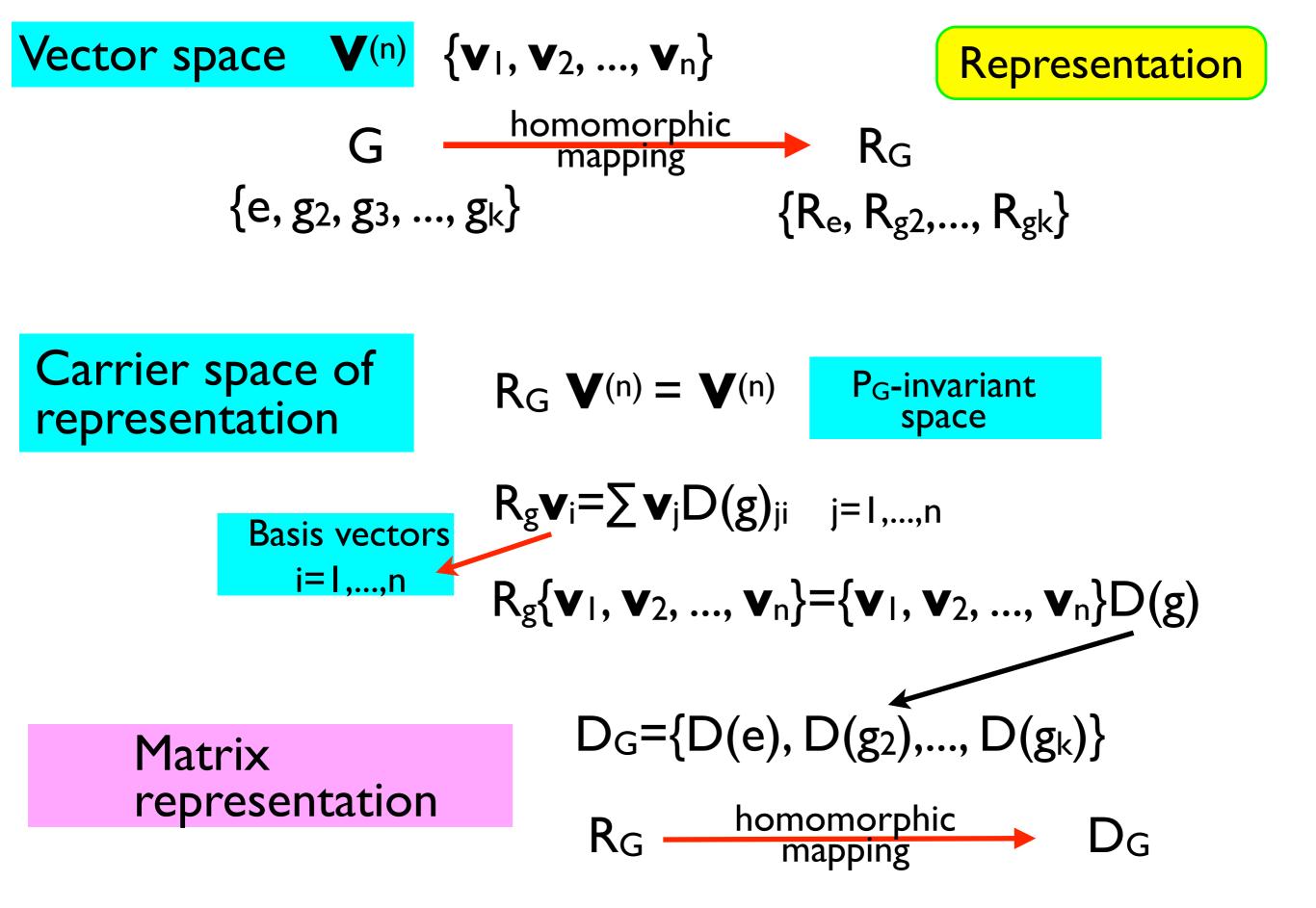
Examples:





**Determine the rest of the matrices:** 

 $D(g_i)D(g_j)=D(g_ig_j)$ 



Equivalent Representations of Groups

Given two reps of G:

 $D(G) = \{D(g_i), g_i \in G\}$  $D'(G) = \{D'(g_i), g_i \in G\}$ 

dim  $D(G) = \dim D'(G)$ 

equivalent representations

 $D(G) \sim D'(G)$ 

if  $\exists S: D(g) = S^{-1}D'(g)S \quad \forall g \in G$ S: invertible matrix

**Equivalent Representations** 

two sets of bases for  $V^{(3)}$ 

$$(e_1, e_2, e_3)$$
 and  $(e'_1, e'_2, e'_3) = (e_1, e_2, e_3)P$ 

two reps of G

 $\begin{aligned} &R_g(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) D(g), \ g \in G \\ &R_g(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \ \mathsf{D}'(g), \ g \in G \end{aligned}$ 

D(G) and D'(G) are equivalent, as:

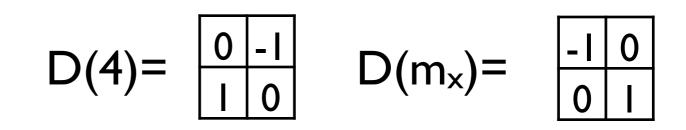
$$R_{g}(\mathbf{e}'_{1}, \mathbf{e}'_{2}, \mathbf{e}'_{3}) = R_{g}[(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3})P]$$
$$= (\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3})D(g)P$$
$$= (\mathbf{e}'_{1}, \mathbf{e}'_{2}, \mathbf{e}'_{3})P^{-1}D(g)P$$

 $D'(g) = P^{-1}D(g)P, g \in G$ 

# EXERCISE 2.6.1.1(b)

2-dim faithful representation of 4mm

In problem 2.6.1.1(a) we consider a representation of 4mm with respect to the basis {**a**,**b**} of the type

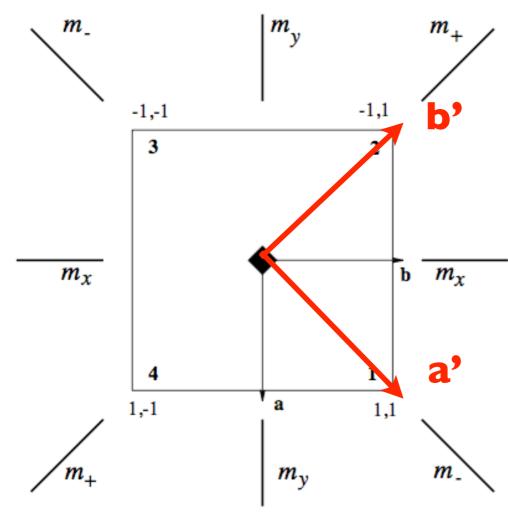


2,

Determine the matrices of the representation of 4mm with respect to the new bases (**a**<sup>2</sup>,**b**<sup>2</sup>)

$$R_g{a', b'}={a', b'}D'(g)$$

4<sup>-1</sup>,  $m_x$ ,  $m_y$ ,  $m_+$ ,  $m_-$ 



### Problem 2.6.1.1 (c)

Show that the representations D and D'of the group 4mm determined in problems 2.6.1.1(a) and 2.6.1.1(b) are equivalent, *i.e* show that there exists a matrix S such that:  $S^{-1}D(g)S=D'(g)$ ,  $g\in$ 4mm.

2.6.1.1a: 
$$D(4) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} D(m_x) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
  
2.6.1.1b:  $D'(4) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} D'(m_x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

### EXERCISE 2.6.1.2

The cyclic group  $C_4$  of order 4 is generated by the element g. Two of the following three representations of  $C_4$  are equivalent:

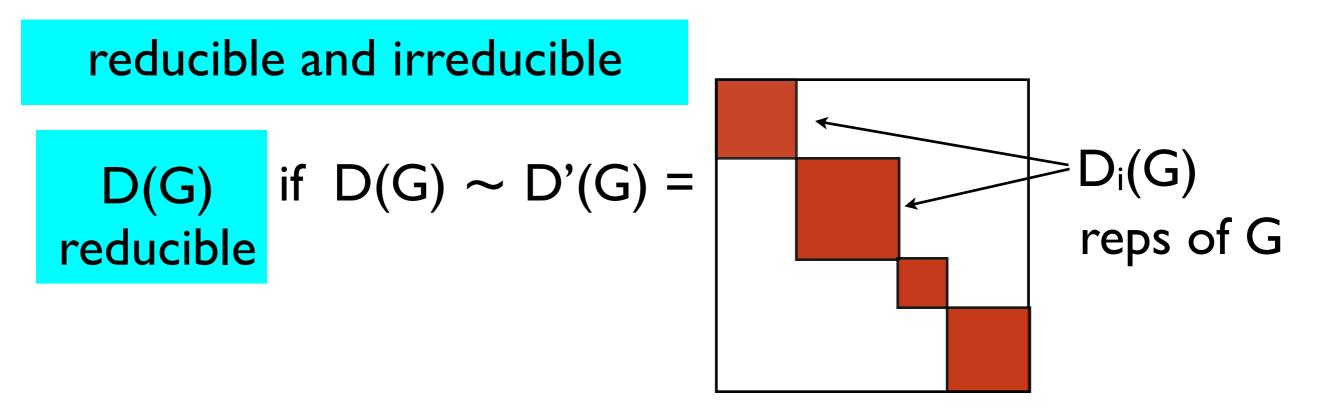
$$D_{I}(g) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \qquad D_{2}(g) = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad D_{3}(g) = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$$

Determine which of the two are equivalent and find the corresponding similarity matrix. Can you give an argument why the third representation is not equivalent?

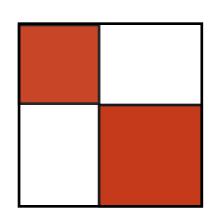
**Hint**: The determination of X such that  $D'(g)=X^{-1}D(g)X$  is equivalent to determine X such that XD'(g)=D(g)X, with the additional condition, det  $X \neq 0$ .

Reducible and Irreducible Representations of Groups

reps of G: 
$$D(G) = \{D(g_i), g_i \in G\}$$
  
 $D(G) \sim D'(G) \quad D(G) = \frac{S^{-1}D'(G)S}{D(G)}$ 



 $D(G) \sim m_1 D_1(G) \oplus m_2 D_2(G) \oplus ... \oplus m_k D_k(G)$  $\bigoplus m_i D_i(G)$ 



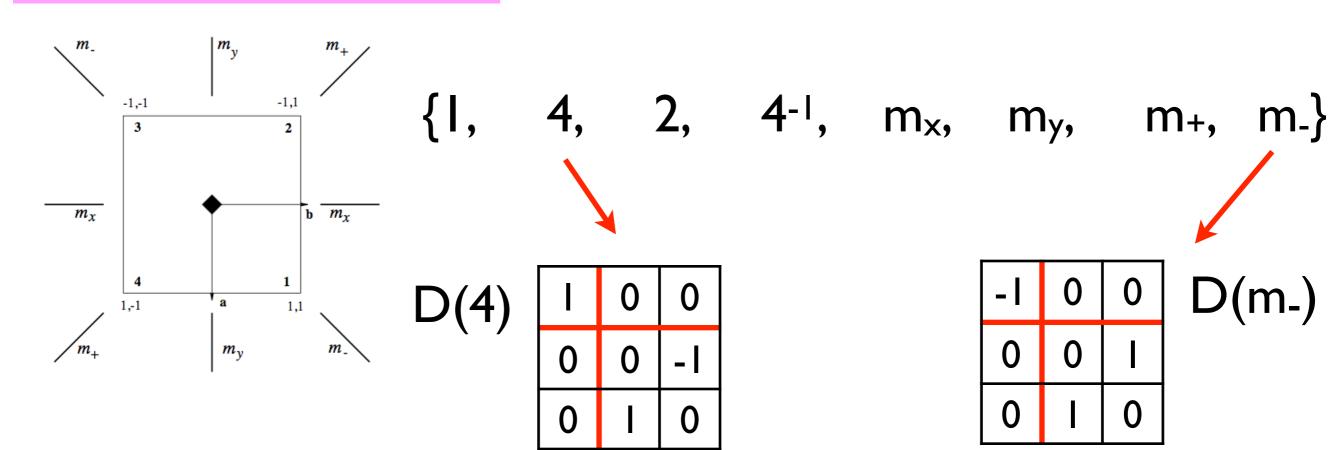
 $D_1(4) = I$  $D_2(4) =$ 0 ' - |  $\mathbf{O}$ 

$$D_{1}(m_{-}) = -1$$

$$D_{2}(m_{-}) = \frac{0 \ 1}{1 \ 0}$$

 $D(G) \sim D_1(G) \oplus D_2(G)$ 

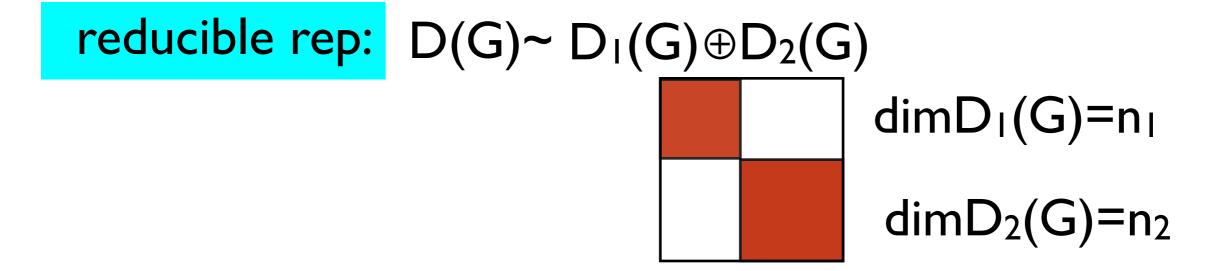
EXAMPLE



Reducible rep of 4mm

Reducible representations and invariant subspaces

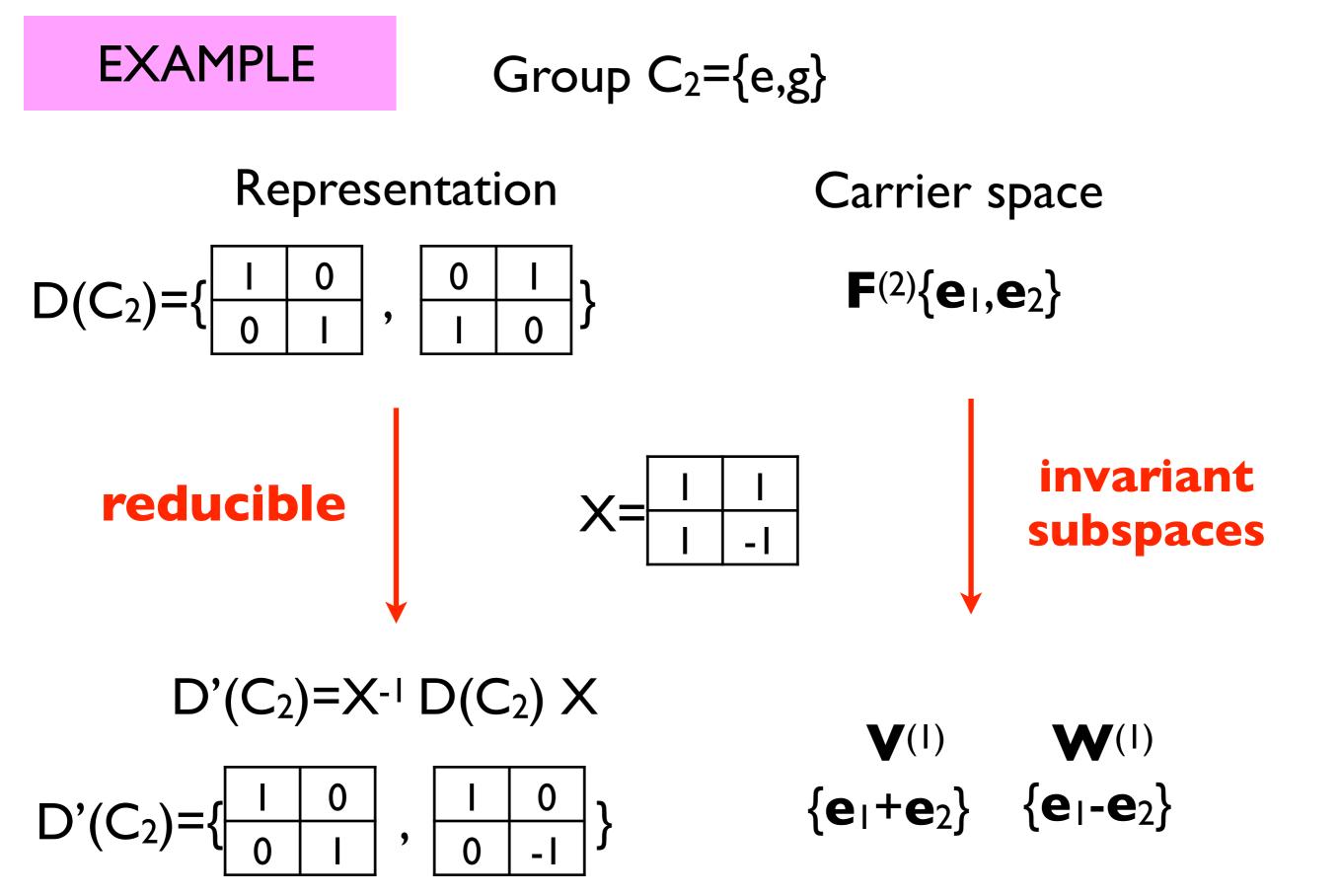
rep D(G) of G:
$$D(G)=\{D(g_i), g_i \in G, \dim D(G)=n\}$$
carrier space: $V^{(n)} \{v_1, v_2, ..., v_n\}$  $R_G V^{(n)} = V^{(n)}$  $R_g v_i = \sum v_j D(g)_{ji}$ 



invariant subspaces:

 $R_{G} \mathbf{V}^{(n1)} = \mathbf{V}^{(n1)} \quad R_{g} \mathbf{v}_{i} = \sum \mathbf{v}_{j} D_{1}(g)_{ji}$  $R_{G} \mathbf{V}^{(n2)} = \mathbf{V}^{(n2)} \quad R_{g} \mathbf{w}_{i} = \sum \mathbf{w}_{j} D_{2}(g)_{ji}$ 

 $\mathbf{V}(n) = \mathbf{V}(n1) \oplus \mathbf{V}(n2)$ 



Representations of Groups Basic results

Schur lemma l

irreps of G:  $D_1(G) = \{D_1(g_i), g_i \in G\}$  $D_2(G) = \{D_2(g_i), g_i \in G\}$ 

if  $\exists A: D_1(G)A = A D_2(G)$ then  $\begin{cases} A=0\\ \dim D_1(G)=\dim D_2(G), \det A\neq 0\\ D_1(G) \sim D_2(G) \end{cases}$  Representations of Groups Basic results

are one-dimensional

WHY?

Schur lemma II

irrep of G: 
$$D_1(G) = \{D_1(g_i), g_i \in G\}$$
  
if  $\exists B: D_1(G)B = B D_1(G)$   
then  $B=cI$ 

Problem: 2.6.1.3 (ii)

Irreps of Abelian groups

Problem 2.6.1.3

#### Exercises

 (i) Determine the general form of the matrix B that commutes with the matrices of all elements of the 2-dim irrep E of 4mm

$$\mathsf{E}(\mathsf{g})\mathsf{B} = \mathsf{B} \mathsf{E}(\mathsf{g}), \mathsf{g} \in 4mm \quad (*)$$

where 
$$E(4) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} E(m_{yz}) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Hint: To determine B it is sufficient to consider the commuting equations (\*) for the generators of 4mm

(ii) Show that the irreps of Abelian groups are onedimensional Representations of Groups Basic results

number and dimensions of irreps

number of irreps = number of conjugacy classes order of G =  $\sum [\dim D_i(G)]^2$ 

great orthogonality theorem

rreps of G: 
$$D_1(G), D_2(G),$$
  
 $\dim D_1(G)=d$   
 $\sum_{g} D_1(g)_{jk}^* D_2(g)_{st} = \frac{|G|}{d} \delta_{12}\delta_{js}\delta_{kt}$ 

I. Determine the number and dimensions of the irreps of 222.

Can you write down the irrep table of 222?

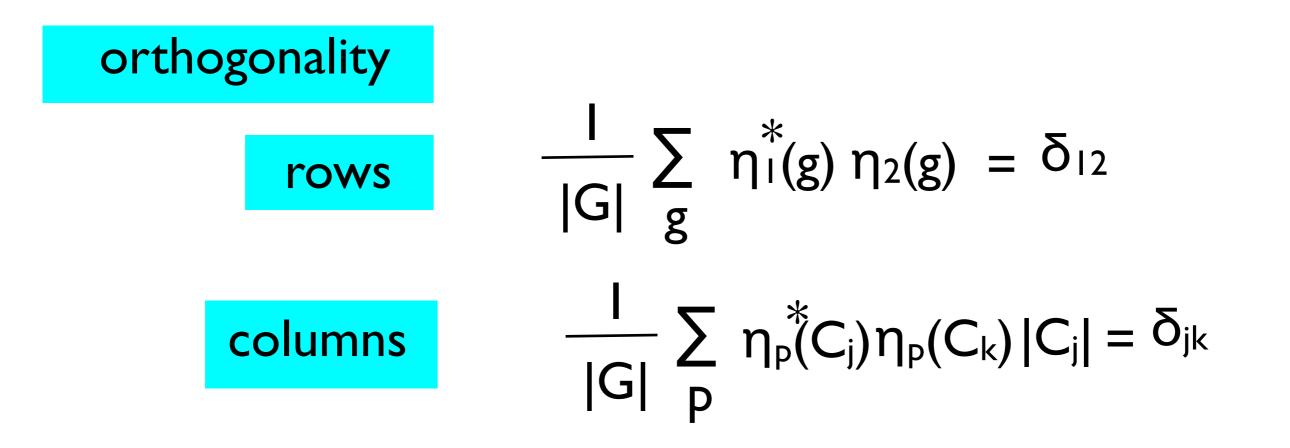
2. Determine the number and dimensions of the irreps of 4mm. What about the irreps of 422? And of 4/mmm?

3. Determine the number and dimensions of the irreps of 3m. What about the irreps of 32? And of 3m?

# CHARACTERS OF REPRESENTATIONS

Characters of Representations Basic results

$$\begin{split} \eta(g) &= \operatorname{trace}[\mathsf{D}(g)] = \sum \mathsf{D}(g)_{ii} \\ \mathsf{D}_1(\mathsf{G}) &\sim \mathsf{D}_2(\mathsf{G}) \longleftrightarrow \eta_1(g) = \eta_2(g), g \in \mathsf{G} \\ g_1 &\sim g_2 &\longleftrightarrow \eta_1(g) = \eta_2(g), g \in \mathsf{G} \end{split}$$



**Character Tables** 

## Finite group G: r conjugacy classes {e}, {g<sub>2</sub>,..., g<sub>k</sub>},...,{g<sub>r</sub>, ...} r irreducible representations $D_i(G)$ $\mu_{Di}(G) = {\mu_{Di}(e), \mu_{Di}(g_2), ..., \mu_{Di}(g_r)}$

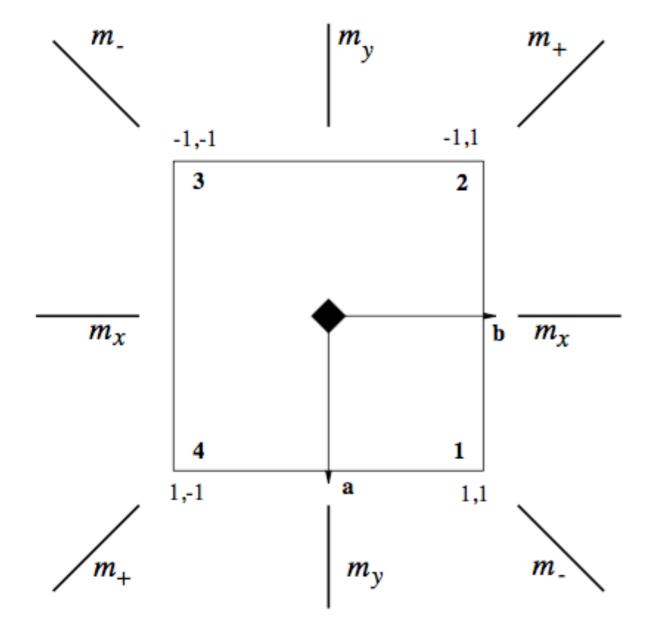
# Character Table of G: $\mathbf{r} \times \mathbf{r}$ matrix $\mathbf{X} = \mathbf{X}(G)$ $\mathbf{X}_{ij} = \mu_{Di}(g_j)$

rows: irrep labels (Mulliken, Bethe) columns: conjugacy classes

Additional data: order of the elements length of conjugacy classes basis functions

### Problem 2.6.1.5

Determine the characters of the irreps of 4mm and order them in a character table



Multiplication table of 4mm

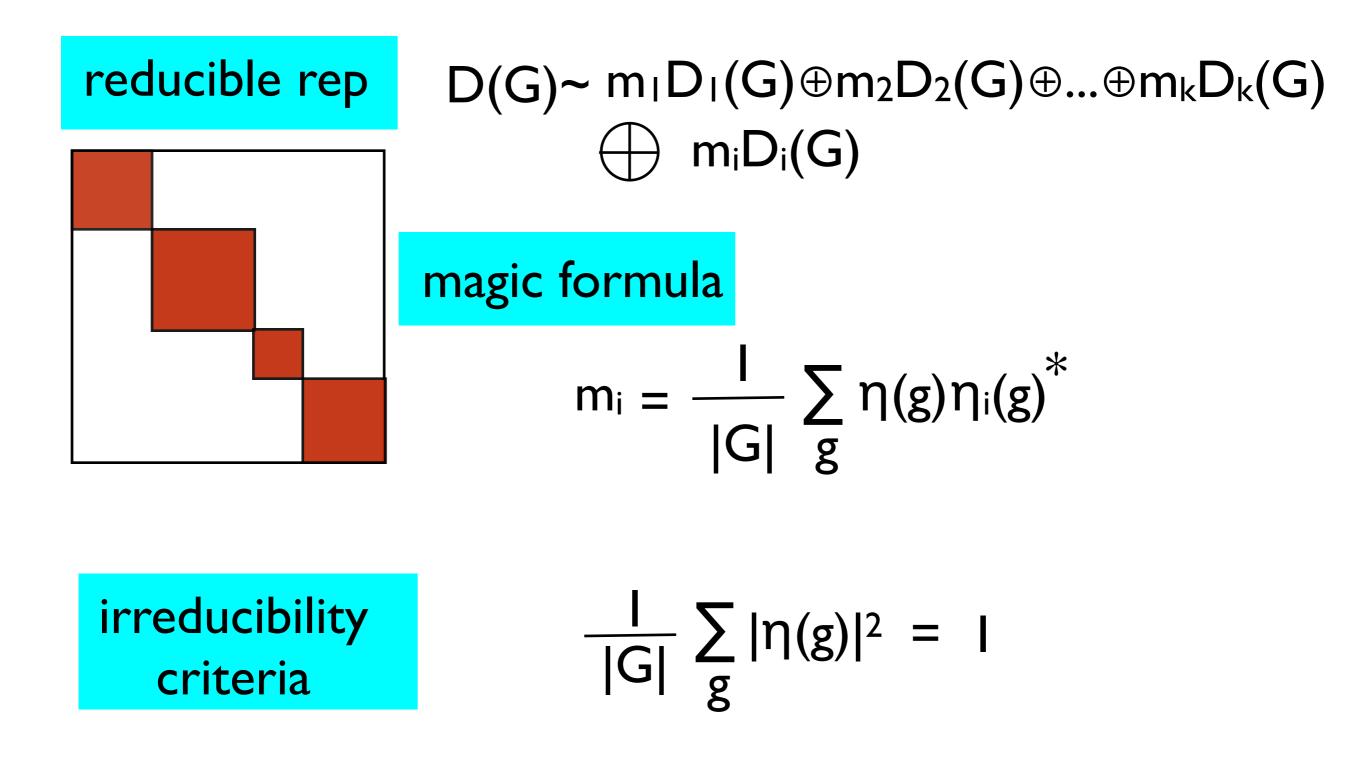
Problem 2.6.1.5 (cont)

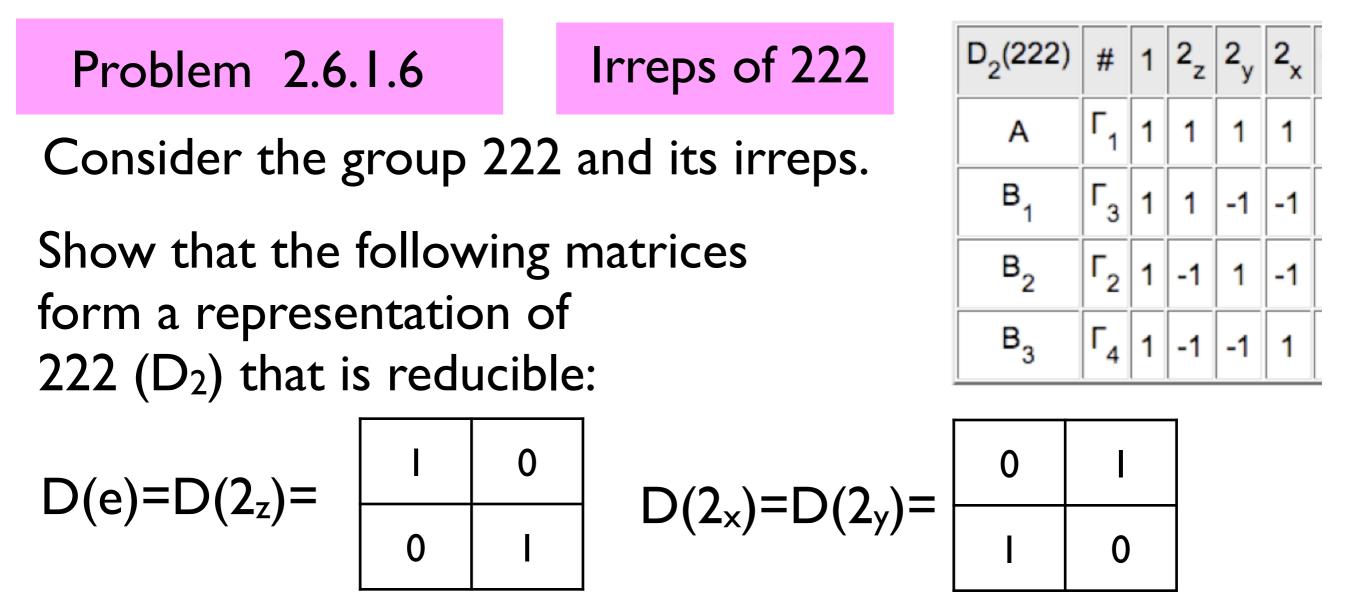
### Character table of 432

rows 
$$\frac{I}{|G|} \sum_{g} \eta_{1}^{*}(g) \eta_{2}(g) = \delta_{12}$$
$$\frac{I}{|G|} \sum_{p} \eta_{P}^{*}(C_{j})\eta_{P}(C_{k}) |C_{j}| = \delta_{jk}$$

| class length  | 1 | 3        | 6         | 8           | 6           |
|---------------|---|----------|-----------|-------------|-------------|
| element order | 1 | <b>2</b> | 2         | 3           | 4           |
|               | 1 | $2_z$    | $2_{xx0}$ | $3^+_{xxx}$ | $4_{z}^{+}$ |
| $A_1$         | 1 | 1        | 1         | 1           | 1           |
| $A_2$         | 1 | 1        | -1        | 1           | -1          |
| E             | 2 | ?        | ?         | ?           | ?           |
| $T_1$         | 3 | -1       | -1        | 0           | 1           |
| $T_2$         | 3 | -1       | 1         | 0           | -1          |

**Characters of Representations** 





I. Decompose the reducible representation into irreps of 222

2. Determine the matrix **S** that transforms the matrices of the reducible representation into direct sum of irreps.

Hint:  $D(G)S=S[\bigoplus m_iD_i(G)]$ 

#### Problem 2.6.1.8

Consider the character table of the irreps of the group 422. The characters of reducible representations DI, D2 and D3 of 422 are given at the bottom of the table.

Determine the decomposition of the reps DI, D2 and D3 into irreps of 422.

Hint: 'magic' formula

$$m_{i} = \frac{I}{|G|} \sum_{g} \eta(g) \eta_{i}(g)^{*}$$

| D <sub>4</sub> (422) | #              | 1  | 2  | 4  | 2 <sub>h</sub> | 2 <sub>h'</sub> |
|----------------------|----------------|----|----|----|----------------|-----------------|
| Mult.                | -              | 1  | 1  | 2  | 2              | 2               |
| A <sub>1</sub>       | Γ <sub>1</sub> | 1  | 1  | 1  | 1              | 1               |
| A <sub>2</sub>       | Γ <sub>3</sub> | 1  | 1  | 1  | -1             | -1              |
| B <sub>1</sub>       | ۲ <sub>2</sub> | 1  | 1  | -1 | 1              | -1              |
| B <sub>2</sub>       | Γ <sub>4</sub> | 1  | 1  | -1 | -1             | 1               |
| E                    | Г <sub>5</sub> | 2  | -2 | 0  | 0              | 0               |
| DI                   |                | 6  | 2  | 0  | 0              | 0               |
| D2                   |                | 10 | 6  | -2 | -2             | 0               |
| D3                   |                | 11 | 7  | -3 | -3             | -3              |

# DIRECT PRODUCT OF REPRESENTATIONS

Direct-product (Kronecker) product of matrices

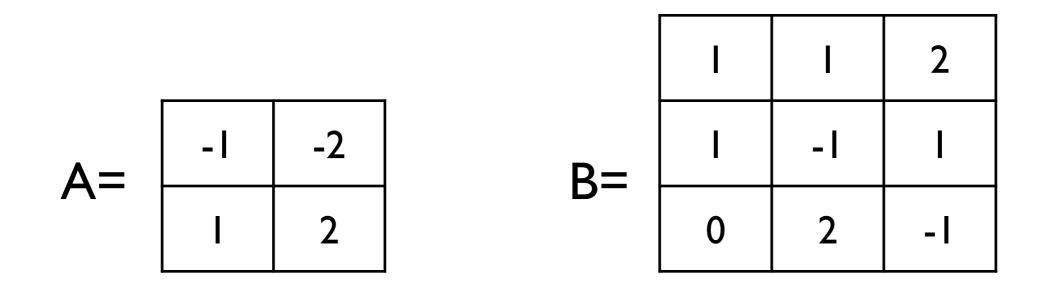
 $\begin{pmatrix} 0 & -1 & 0 & 0 & 0 & 0 \end{pmatrix}$ 



dim (A  $\otimes$  B) = dim(A) . dim(B) tr(A  $\otimes$  B) = tr(A). tr(B) (A  $\otimes$  B)(C  $\otimes$  D)=(AC  $\otimes$  BD) dim A=dim C=n dim B=dim D=m Problem 2.6.2.1

Kronecker product

Calculate the Kronecker products  $A \otimes B$  and  $B \otimes A$  of the following two matrices

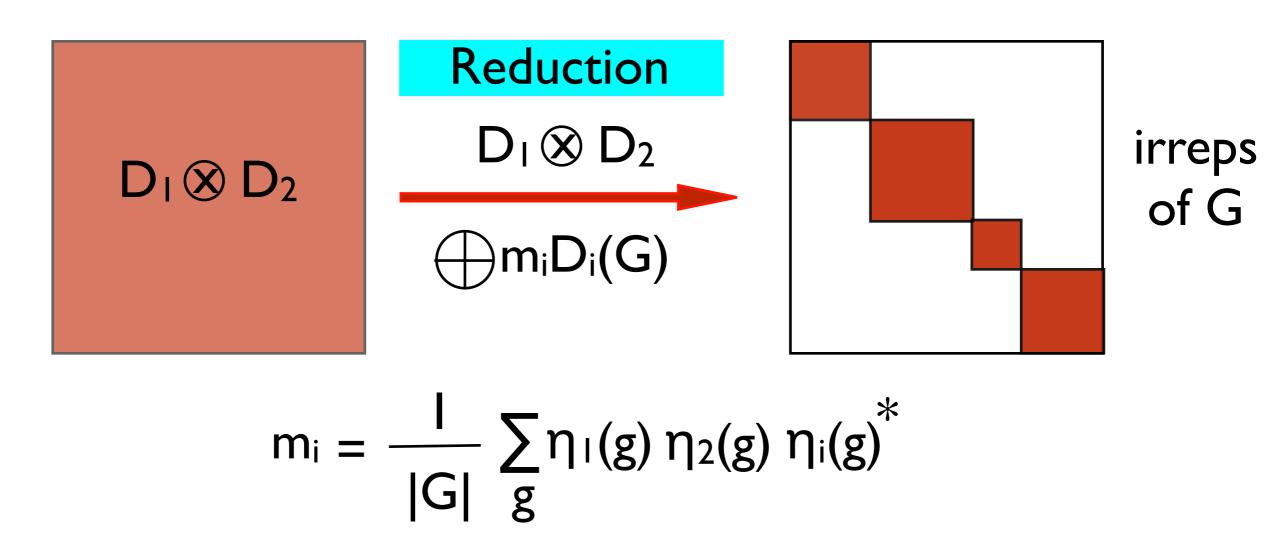


What is the trace of the matrix  $A \otimes B$ ? And of  $B \otimes A$ ?

#### Direct product of representations

 $\begin{array}{ll} D_1(G): irrep \ of \ G \\ \{D_1(e), D_1(g_2), \dots, D_1(g_n)\} \end{array} & \begin{array}{ll} D_2(G): irrep \ of \ G \\ \{D_2(e), D_2(g_2), \dots, D_2(g_n)\} \end{array} \\ \end{array}$ 

Direct-product representation  $D_1 \otimes D_2 = \{D_1(e) \otimes D_2(e), ..., D_1(g_i) \otimes D_2(g_i), ...\}$ 



### Direct product of representations

$$D_1(G)$$
: irrep of G $D_2(G)$ : irrep of G $V^{(h)}$  { $v_1, v_2, ..., v_h$ } $W^{(k)}$  { $w_1, w_2, ..., w_k$ }Direct-product representation

$$D_1 \otimes D_2 = \{ D_1(e) \otimes D_2(e), ..., D_1(g_i) \otimes D_2(g_i), ... \}$$

Carrier space

 $\mathbf{V}^{(h)} \bigotimes \mathbf{W}^{(k)} \left\{ \mathbf{v}_{1} \mathbf{w}_{1}, \mathbf{v}_{2} \mathbf{w}_{1}, ..., \mathbf{v}_{i} \mathbf{w}_{j}, ..., \mathbf{v}_{h} \mathbf{w}_{k} \right\}$ 

 $R_{g}\mathbf{v}_{i}\mathbf{w}_{j}=\sum \mathbf{v}_{l}\mathbf{w}_{m}(D_{l}\otimes D_{2})(g)_{lm}$ 

#### Problem 2.6.2.2

Determine the multiplication table of the irreps of 4mm

$$\begin{split} D_1 \otimes D_2 &\sim \bigoplus m_i D_i(G) \quad \eta(D_1 \otimes D_2)(g_i) = \eta_1(g_i) \eta_2(g_i) \\ m_i &= \frac{I}{|G|} \sum_g \eta_1(g) \eta_2(g) \eta_i(g)^* \end{split}$$

| C <sub>4v</sub> (4mm) | #              | 1 | 2  | 4  | $m_{\rm x}$ | m <sub>d</sub> |
|-----------------------|----------------|---|----|----|-------------|----------------|
| Mult.                 | -              | 1 | 1  | 2  | 2           | 2              |
| A <sub>1</sub>        | Г1             | 1 | 1  | 1  | 1           | 1              |
| A <sub>2</sub>        | Г <sub>2</sub> | 1 | 1  | 1  | -1          | -1             |
| B <sub>1</sub>        | ۲ <sub>3</sub> | 1 | 1  | -1 | 1           | -1             |
| B <sub>2</sub>        | Γ <sub>4</sub> | 1 | 1  | -1 | -1          | 1              |
| E                     | Г <sub>5</sub> | 2 | -2 | 0  | 0           | 0              |

Direct-product representation

# Determine the multiplication table for the irreps of the group 3m

$$m_{i} = \frac{I}{|G|} \sum_{g} \eta_{I}(g) \eta_{2}(g) \eta_{i}(g)^{*}$$

| C <sub>3v</sub> (3m) | #              | 1 | 3  | m  |
|----------------------|----------------|---|----|----|
| Mult.                | -              | 1 | 2  | 3  |
| A <sub>1</sub>       | Г <sub>1</sub> | 1 | 1  | 1  |
| A <sub>2</sub>       | Г <sub>2</sub> | 1 | 1  | -1 |
| E                    | г <sub>3</sub> | 2 | -1 | 0  |

Symmetrized and anti-symmetrized squares

$$V \{v_1, v_2, ..., v_n\} : D(G)$$
$$V \otimes V \{v_1, v_1, v_2, ..., v_i, v_j, ..., v_n, v_n\}$$

symmetrized square  $[V]^2$ : vv' = v'v

basis 
$$[V]^2$$
:  $\{V_iV_j + V_jV_i, l \le i \le j \le n\}$   
dim  $[V]^2 = 1/2n(n+1)$ 

anti-symmetrized square  $\{V\}^2$ : vv' = -v'v

basis  $\{V\}^2$ :  $\{V_iV_j - V_jV_i, I \le i \le j \le n\}$ dim  $\{V\}^2 = I/2n(n-I)$  Symmetrized and anti-symmetrized squares

 $V \{v_1, v_2, ..., v_n\}$ : D(G) rep of G:

character of D(G):  $\mu(G) = \{\mu(e), \mu(g_2), ..., \mu(g_n)\}$ 

symmetrized square [V]<sup>2</sup>: [D(G)]<sup>2</sup>

character of  $[D(G)]^2$ :  $[\mu(g)]^2 = 1/2(\mu^2(g) + \mu(g^2))$ 

anti-symmetrized square  $\{V\}^2$ :  $\{D(G)\}^2$ 

character of  $\{D(G)\}^2$ :  $\{\mu(g)\}^2 = 1/2(\mu^2(g)-\mu(g^2))$ 

#### Problem 2.6.2.3

# Symmetrized and anti-symmetrized squares

Calculate the characters of the symmetrized and anti-symmetrized squares of the two-dimensional irreps of 4mm and 3m.

If  $\{E\}^2$  and/or  $[E]^2$  are reducible, decompose them into irreps.

| C <sub>3v</sub> (3m) | #              | 1 | 3  | m  |
|----------------------|----------------|---|----|----|
| Mult.                | -              | 1 | 2  | 3  |
| A <sub>1</sub>       | Г <sub>1</sub> | 1 | 1  | 1  |
| A <sub>2</sub>       | Г <sub>2</sub> | 1 | 1  | -1 |
| E                    | г <sub>3</sub> | 2 | -1 | 0  |

| C <sub>4v</sub> (4mm) | #              | 1 | 2  | 4  | $m_{\rm x}$ | m <sub>d</sub> |
|-----------------------|----------------|---|----|----|-------------|----------------|
| Mult.                 | -              | 1 | 1  | 2  | 2           | 2              |
| A <sub>1</sub>        | Г1             | 1 | 1  | 1  | 1           | 1              |
| A <sub>2</sub>        | Г <sub>2</sub> | 1 | 1  | 1  | -1          | -1             |
| B <sub>1</sub>        | ۲ <sub>3</sub> | 1 | 1  | -1 | 1           | -1             |
| B <sub>2</sub>        | Γ <sub>4</sub> | 1 | 1  | -1 | -1          | 1              |
| E                     | Г <sub>5</sub> | 2 | -2 | 0  | 0           | 0              |

# REPRESENTATIONS OF FINITE ABELIAN GROUPS

#### Representations of cyclic groups

$$G = \langle g \rangle = \{g, g^2, \dots g^k, \dots\}$$
$$g^n = e$$

$$\Gamma^{p}(g^{k}) = exp(2\pi ik)\frac{p-1}{n}$$
$$p = 1, ..., n$$

#### Point Group Tables of $C_6(6)$

Character Table

#### Point Group Tables of $C_4(4)$

|                    | Character Table                                 |        |          |           |           |                                                 |  |  |  |  |  |  |
|--------------------|-------------------------------------------------|--------|----------|-----------|-----------|-------------------------------------------------|--|--|--|--|--|--|
| C <sub>4</sub> (4) | $C_4^{(4)}$ # 1 2 4 <sup>+</sup> 4 <sup>-</sup> |        |          | 4+        | 4-        | functions                                       |  |  |  |  |  |  |
| Α                  | Г <sub>1</sub>                                  | 1      | 1        | 1         | 1         | $z,x^2+y^2,z^2,J_z$                             |  |  |  |  |  |  |
| В                  | Г <sub>2</sub>                                  | 1      | 1        | -1        | -1        | x <sup>2</sup> -y <sup>2</sup> ,xy              |  |  |  |  |  |  |
| E                  | Г <sub>4</sub><br>Г <sub>3</sub>                | 1<br>1 | -1<br>-1 | -1j<br>1j | 1j<br>-1j | (x,y),(xz,yz),(J <sub>x</sub> ,J <sub>y</sub> ) |  |  |  |  |  |  |

|                    | Character Table                  |        |                       |         |          |         |                       |                                                 |  |  |  |  |  |
|--------------------|----------------------------------|--------|-----------------------|---------|----------|---------|-----------------------|-------------------------------------------------|--|--|--|--|--|
| C <sub>6</sub> (6) | #                                | Е      | 6+                    | 3+      | 2        | 3-      | 6 <sup>-</sup>        | functions                                       |  |  |  |  |  |
| Α                  | Г <sub>1</sub>                   | 1      | 1                     | 1       | 1        | 1       | 1                     | $z,x^2+y^2,z^2,J_z$                             |  |  |  |  |  |
| В                  | Γ <sub>4</sub>                   | 1      | -1                    | 1       | -1       | 1       | -1                    | •                                               |  |  |  |  |  |
| E <sub>2</sub>     | Г <sub>3</sub><br>Г <sub>2</sub> | 1<br>1 | w<br>w <sup>2</sup>   | w²<br>w | 1        | w<br>w² | w²<br>w               | (x <sup>2</sup> -y <sup>2</sup> ,xy)            |  |  |  |  |  |
| E <sub>1</sub>     | Г <sub>5</sub><br>Г <sub>6</sub> | 1<br>1 | -w <sup>2</sup><br>-w | w<br>w² | -1<br>-1 | w²<br>w | -w<br>-w <sup>2</sup> | (x,y),(xz,yz),(J <sub>x</sub> ,J <sub>y</sub> ) |  |  |  |  |  |

**Examples:** 1, 2, 3, 4, 6, T<sub>1</sub>

Direct-product groups and their representations of

Direct-product groups

$$G_{1} \otimes G_{2} = \{(g_{1},g_{2}), g_{1} \in G_{1}, g_{2} \in G_{2}\}$$
$$(g_{1},g_{2}) (g'_{1},g'_{2}) = (g_{1}g'_{1}, g_{2}g'_{2})$$

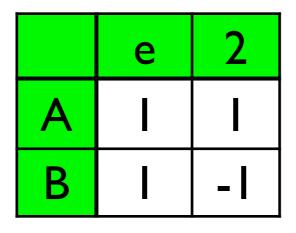
 $G_{I} \otimes \{I,\overline{I}\}$  group of inversion

Irreps of direct-product groups

Problem 2.6.2.4 (I)

Irreps of 222=2⊗2'

Irreps of 2



#### Irreps of 222

|     |                       | е | 2  | 2' | 2.2' |
|-----|-----------------------|---|----|----|------|
| AxA | А                     | Ι | I  | Т  | I    |
| AxB | <b>B</b> <sub>2</sub> | I | -1 | I  | -1   |
| BxA | Bı                    |   |    | -1 | -1   |
| BxB | B <sub>3</sub>        | I | -  | -1 | Ι    |

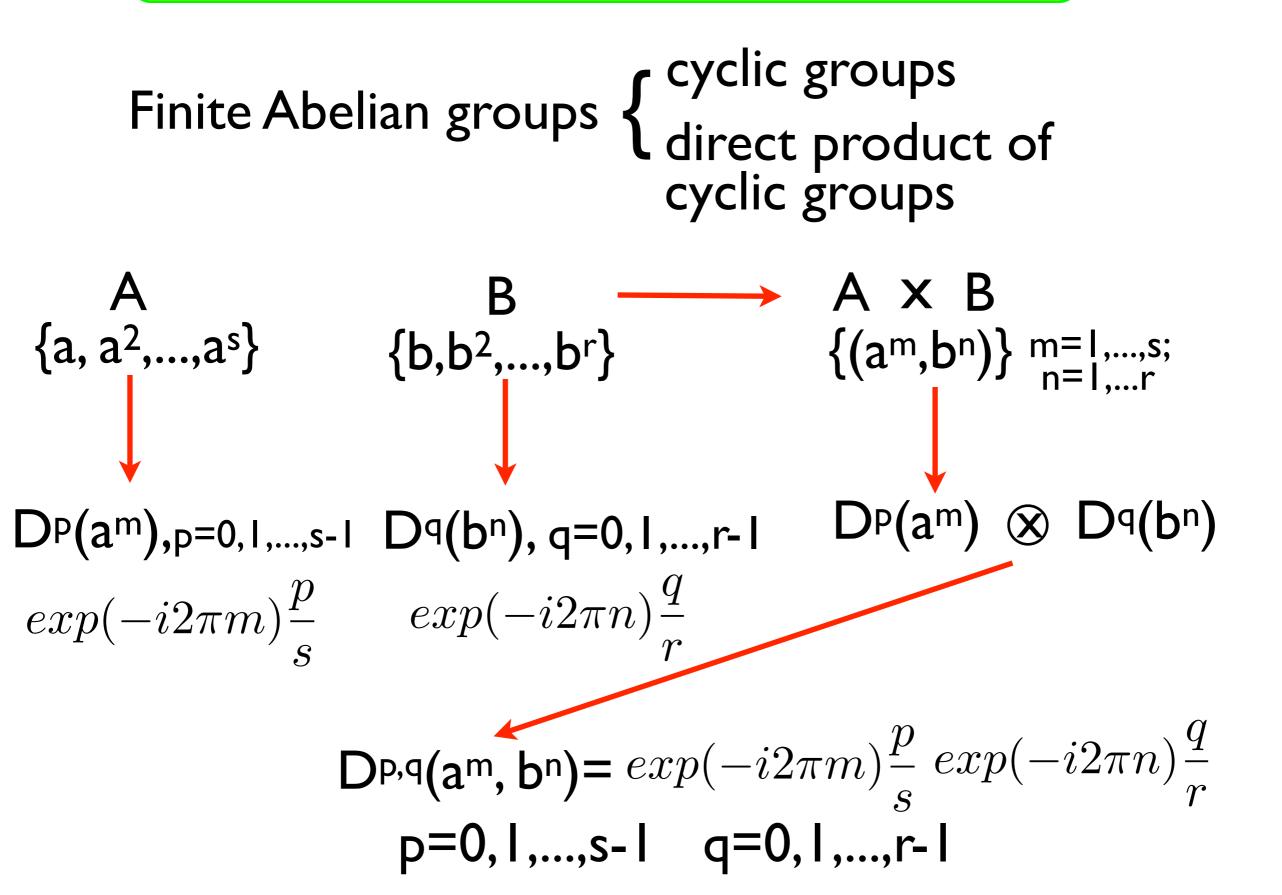
Irreps of  $4/mm = 422 \times \overline{I}$ 

# Determine the character table of the group 4/mm=422 $\otimes$ T from the character tables of groups 422 and T

| D <sub>4</sub> (422) | #              | 1 | 2  | 4  | 2 <sub>h</sub> | 2 <sub>h'</sub> |
|----------------------|----------------|---|----|----|----------------|-----------------|
| Mult.                | -              | 1 | 1  | 2  | 2              | 2               |
| A <sub>1</sub>       | Г <sub>1</sub> | 1 | 1  | 1  | 1              | 1               |
| A <sub>2</sub>       | Γ <sub>3</sub> | 1 | 1  | 1  | -1             | -1              |
| B <sub>1</sub>       | ۲ <sub>2</sub> | 1 | 1  | -1 | 1              | -1              |
| B <sub>2</sub>       | Γ <sub>4</sub> | 1 | 1  | -1 | -1             | 1               |
| E                    | Г <sub>5</sub> | 2 | -2 | 0  | 0              | 0               |

| C <sub>i</sub> (-1) | #                | 1 | -1 |
|---------------------|------------------|---|----|
| Ag                  | г <sub>1</sub> + | 1 | 1  |
| A <sub>u</sub>      | Г <sub>1</sub> - | 1 | -1 |

#### Representations of finite Abelian groups



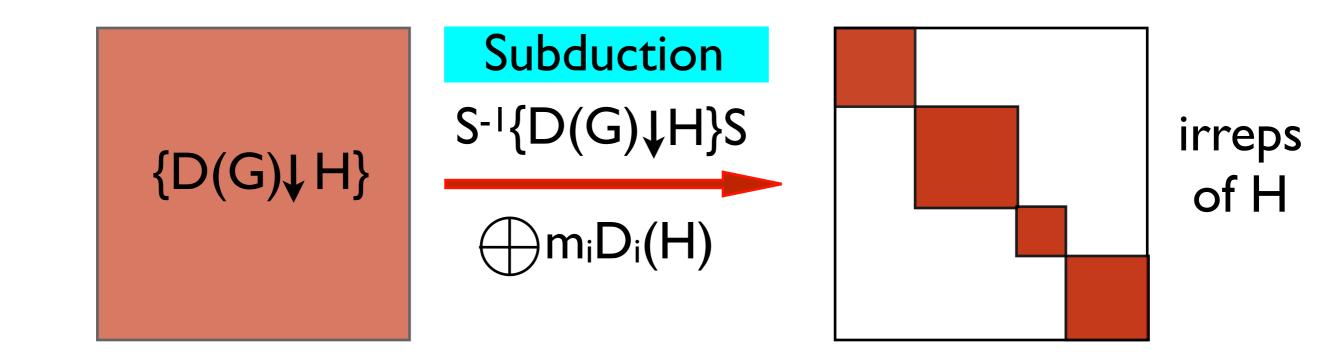
3. Determine the character table of the group  $4/m \cong 4 \otimes 2$  from the character tables of the cyclic groups 4 and 2.

4. Determine the character table of the group  $6 \cong 3 \otimes 2$  from the character tables of the cyclic groups 3 and 2.

SUBDUCED REPRESENTATIONS

## SUBDUCED REPRESENTATION

D(G): irrep of G {D(e), D(g<sub>2</sub>), D(g<sub>3</sub>),..., D(g<sub>i</sub>),..., D(g<sub>n</sub>)} {D(e), D(h<sub>2</sub>), D(h<sub>3</sub>), ..., D(h<sub>m</sub>)} {D(G) H}: subduced rep of H<G



## SUBDUCED REPRESENTATION

 $\{\mathbf{D}^r(g_i)\} = \mathbf{D}^r(\mathcal{G}) \downarrow \mathcal{H}$ : reducible in general

1. Decomposition of  $\mathbf{D}^{r}(\mathcal{G}) \downarrow \mathcal{H}$  $\mathbf{D}^{r}(\mathcal{G}) \downarrow \mathcal{H} \sim \oplus m_{i} \mathbf{D}^{i}(h), h \in \mathcal{H}.$ 

$$\chi(\mathbf{D}^r(\mathcal{G}\downarrow\mathcal{H})) = \sum_i m_i \chi(\mathbf{D}^i(\mathcal{H}))$$

$$m_i = \frac{1}{|\mathcal{H}|} \sum_h \chi^r(h) \chi^i(h)^*$$

2. Subduction matrix

$$\mathbf{S}^{-1}(\mathbf{D}^r \downarrow \mathcal{H})(h) \mathbf{S} = \oplus m_i \mathbf{D}^i(h), h \in \mathcal{H}.$$

Let E be the 2-dimensional irrep of 4mm:

$$\mathbf{4} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \mathbf{m}_x = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- 1. Is the subduced representation  $\textbf{E} \downarrow \textbf{4}$  reducible or irreducible ?
- If reducible, decompose it into irreps of 4.
- 3. Determine the corresponding subduction matrix **S**, defined by  $\mathbf{S}^{-1}(\mathbf{E} \downarrow \mathbf{4})(h) \mathbf{S} = \oplus m_i \mathbf{D}^i(h), h \in 4.$

#### EXERCISES

#### Problem 2.6.2.5

#### Point Group Tables of C<sub>4v</sub>(4mm)

#### **Character Table**

| C <sub>4v</sub> (4mm) | #              | 1 | 2  | 4  | m <sub>x</sub> | m <sub>d</sub> | functions                      |
|-----------------------|----------------|---|----|----|----------------|----------------|--------------------------------|
| Mult.                 | -              | 1 | 1  | 2  | 2              | 2              | •                              |
| A <sub>1</sub>        | Г <sub>1</sub> | 1 | 1  | 1  | 1              | 1              | $z,x^2+y^2,z^2$                |
| A <sub>2</sub>        | Г <sub>2</sub> | 1 | 1  | 1  | -1             | -1             | Jz                             |
| B <sub>1</sub>        | Г <sub>3</sub> | 1 | 1  | -1 | 1              | -1             | x <sup>2</sup> -y <sup>2</sup> |
| B <sub>2</sub>        | Γ <sub>4</sub> | 1 | 1  | -1 | -1             | 1              | ху                             |
| E                     | Г <sub>5</sub> | 2 | -2 | 0  | 0              | 0              | $(x,y),(xz,yz),(J_x,J_y)$      |

#### Point Group Tables of $C_4(4)$

#### **Character Table** C<sub>4</sub>(4) # 1 2 4+ functions 4⁻ $z,x^2+y^2,z^2,J_z$ $[\Gamma_1]$ 1 1 1 1 А Γ<sub>2</sub> x<sup>2</sup>-y<sup>2</sup>,xy -1 1 1 -1 в (**F**4) 1 Е 1 Г<sub>3</sub>

# INDUCED REPRESENTATIONS

#### **INDUCED REPRESENTATION**

Group-subgroup pair  $\mathcal{G} > \mathcal{H}$ ; Irrep  $\mathbf{D}^{j}(\mathcal{H})$  $\mathcal{G} = \mathcal{H} \cup g_{2}\mathcal{H} \cup \ldots \cup g_{r}\mathcal{H}$ 

Induced rep of  $\mathcal{G}$ : The set of  $(r d \times r d)$  matrices

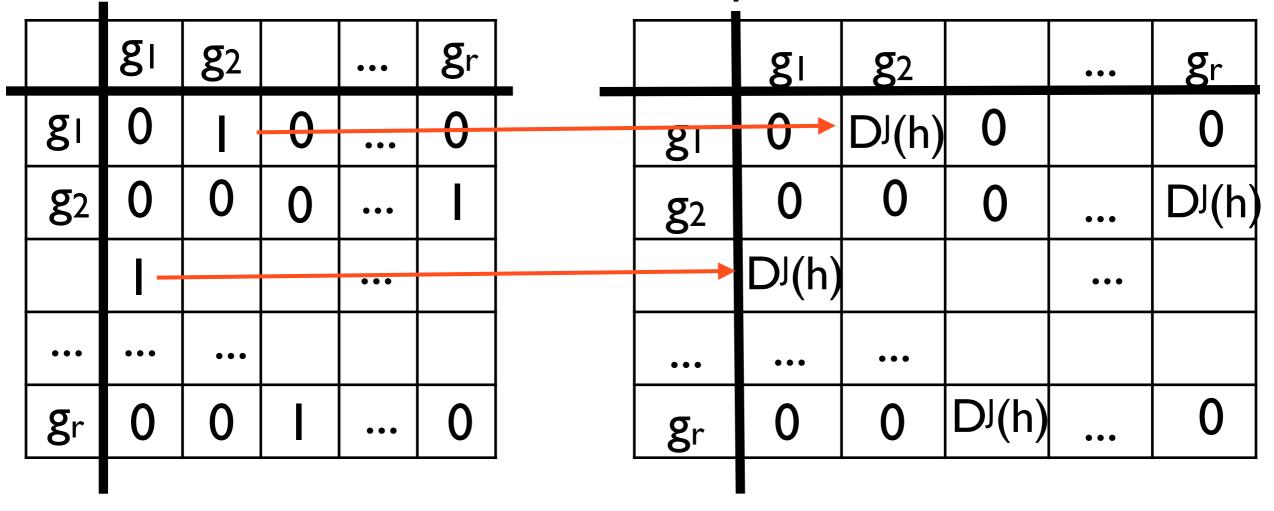
$$\mathbf{D}^{Ind}(g)_{mt,ns} = \begin{cases} \mathbf{D}^{j} (g_m^{-1} g g_n)_{t,s} & \text{if } g_m^{-1} g g_n = h \\ 0 & \text{if } g_m^{-1} g g_n \notin \mathcal{H} \end{cases}$$

 $\mathbf{D}^{Ind}(g)_{mt,ns} = \mathbf{M}(g)_{m,n} \mathbf{D}^{j}(h)_{t,s}$ 

### **INDUCED REPRESENTATION**

#### Induction matrix M(g) monomial matrix

Induced representation D<sup>Ind</sup>(g) super-monomial matrix



 $M(g)_{mn} = \begin{cases} I & \text{if } g_m^{-1}gg_n = h \\ 0 & \text{if } g_m^{-1}gg_n \notin H \end{cases}$ 

## Determine representations of 4mm induced from the irreps of $\{1, m_{010}\}$ .

| 4mm                 | 1                                                    | $2_z$               | $4_z$               | $4_z^{-1}$          | $m_{xz}$            | $m_{yz}$            | $m_{xx}$            | $m_{x\overline{x}}$ |
|---------------------|------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 1                   | $\begin{array}{c c}1\\2_z\\4_z\\4_z^{-1}\end{array}$ | $2_z$               | $4_z$               | ${\bf 4}_{z}^{-1}$  | $m_{xz}$            | $m_{yz}$            | $m_{xx}$            | $m_{x\overline{x}}$ |
| $2_z$               | 2 <sub>z</sub>                                       | 1                   | ${\bf 4}_{z}^{-1}$  | $4_z$               | $m_{yz}$            | $m_{xz}$            | $m_{x\overline{x}}$ | $m_{xx}$            |
| 4 <sub>z</sub>      | 4 <sub>z</sub>                                       | ${\bf 4}_{z}^{-1}$  | $2_z$               | 1                   | $m_{xx}$            | $m_{x\overline{x}}$ | $m_{yz}$            | $m_{xz}$            |
| $4_z^{-1}$          | $4_z^{-1}$                                           | $4_z$               | 1                   | $2_z$               | $m_{x\overline{x}}$ | $m_{xx}$            | $m_{xz}$            | $m_{yz}$            |
| m <sub>xz</sub>     | $m_{xz}$<br>$m_{yz}$                                 | $m_{yz}$            | $m_{x\overline{x}}$ | $m_{xx}$            | 1                   | $2_z$               | $4_z^{-1}$          | $4_{z}$             |
| m <sub>yz</sub>     | $m_{yz}$                                             | $m_{xz}$            | $m_{xx}$            | $m_{x\overline{x}}$ | 2 <sub>z</sub>      | 1                   | $4_z$               | ${\bf 4}_{z}^{-1}$  |
| m <sub>xx</sub>     | $m_{xx}$                                             | $m_{x\overline{x}}$ | $m_{xz}$            | $m_{yz}$            | $4_z$               | $4_{z}^{-1}$        | 1                   | $2_z$               |
| $m_{x\overline{x}}$ | $m_{x\overline{x}}$                                  | $m_{xx}$            | $m_{yz}$            | $m_{xz}$            | ${\bf 4}_z^{-1}$    | $4_z$               | $2_z$               | 1                   |

Notation:  $m_{010}=m_{xz}$ 

#### Hint to 2.6.2.9

Step I. Decomposition of 4mm with respect to the subgroup  $\{I, m_{xz}\}$ 

**Step 2.** Construction of the induction matrix

$$M(g)_{mn} = \begin{cases} I & \text{if } g_m^{-1}gg_n = h \\ 0 & \text{if } g_m^{-1}gg_n \notin H \end{cases}$$

| g | $g_m$    | $g_m^{-1}$ | $g_m^{-1}g$ | ${oldsymbol{g}}_n$ | h =                                                     | $M_{mn} \neq 0$ |
|---|----------|------------|-------------|--------------------|---------------------------------------------------------|-----------------|
|   |          |            |             |                    | $\boldsymbol{g}_m^{-1} \boldsymbol{g} \boldsymbol{g}_n$ |                 |
| 1 | 1        | 1          | 1           | 1                  | 1                                                       | $M_{11}$        |
|   | $m_{yz}$ | $m_{yz}$   | $m_{yz}$    | $m_{yz}$           | 1                                                       | $M_{22}$        |



Problem 2.6.2.7

Construct the general form of the matrices of a representation of G induced by the irreps of a subgroup H<G of index 2.