Workshop
on the use and applications of the structural and magnetic tools of the BILBAO CRYSTALLOGRAPHIC SERVER

Leioa, 27 June -1 July 2022

OVERVIEW OF CRYSTALLOGRAPHIC POINT SYMMETRY

Mois I. Aroyo
 Universidad del Pais Vasco, Bilbao, Spain
 Universidad
 Euskal Herriko

GROUP THEORY (few basic facts)

I. Crystallographic symmetry operations

Symmetry operations of an object

The symmetry operations are isometries, i.e. they are special kind of mappings between an object and its image that leave all distances and angles invariant.

The isometries which map the object onto itself are called symmetry operations of this object. The symmetry of the object is the set of all its symmetry operations.

Crystallographic symmetry operations

If the object is a crystal pattern, representing a real crystal, its symmetry operations are called crystallographic symmetry operations.

Symmetry operations?

The equilateral triangle allows six symmetry operations: rotations by 120 and 240 around its centre, reflections through the three thick lines intersecting the centre, and the identity operation

Symmetry operations in the plane Matrix representations

Mirror symmetry operation

Fixed points

$$
m_{y} \begin{array}{|c|}
\hline x_{f} \\
\hline y_{f} \\
\hline
\end{array}=\begin{array}{|l|}
\hline x_{f} \\
\hline y_{f} \\
\hline
\end{array}
$$

Mirror line m_{y} at $\mathbf{0 , y}$

Matrix representation

$$
\left.m_{y} \begin{array}{|c|}
\hline x \\
\hline y \\
\hline
\end{array}=\begin{array}{|l|}
\hline-x \\
\hline y \\
\hline-1 \\
\hline
\end{array} \right\rvert\, \begin{array}{|l|}
\hline x \\
\hline y \\
\hline
\end{array}
$$

det

2. Group axioms

DEFINITION. The symmmetry operations of an object constitute its symmetry group.

DEFINITION. A group is a set $G=\left\{e, g_{1}, g_{2}, g_{3} \ldots\right\}$ together with a product \circ, such that
i) G is "closed under o": if g_{1} and g_{2} are any two members of G then so are $g_{1} \circ g_{2}$ and $g_{2} \circ g_{1}$; ii) G contains an identity e : for any g in G, $e \circ g=g \circ e=g$;
iii) \circ is associative: $\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)$;
iv) Each g in G has an inverse g^{-1} that is also in $G: g \circ g^{-1}=g^{-1} \circ g=e$.

Group properties

I. Order of a group | G : number of elements crystallographic point groups: $I \leq|G| \leq 48$
space groups: $|\mathrm{G}|=\infty$
2. Abelian group G:

$$
g_{i} \cdot g_{i}=g_{i} \cdot g_{i} \quad V g_{i}, g_{i} \in G
$$

3. Cyclic group G:

$$
\begin{aligned}
\mathrm{G}=\left\{\mathrm{g}, \mathrm{~g}^{2}, \mathrm{~g}^{3}, \ldots, \mathrm{~g}^{\mathrm{n}}\right\} \quad & \text { finite: }|\mathrm{G}|=\mathrm{n}, \mathrm{~g}^{\mathrm{n}}=\mathrm{e} \\
& \text { infinite: } \mathrm{G}=\left\langle\mathrm{g}, \mathrm{~g}^{-1\rangle}\right.
\end{aligned}
$$

order of a group element: $g^{n=e}$

4. How to define a group

Multiplication table

	E	A	B
E	E	A	B
A	A	B	E
B	B	E	A

Group generators
a set of elements such that each element of the group can be obtained as a product of the generators

Crystallographic Point Groups in 2D

Point group $2=\{1,2\}$

Motif with symmetry of 2

Where is the two-fold point?
drawing: M.M. Julian
Foundations of Crystallography
(c) Taylor \& Francis, 2008

Crystallographic Point Groups in 2D

Point group $2=\{1,2\}$

Motif with symmetry of 2

-order of 2?

drawing: M.M. Julian
Foundations of Crystallography
(C)Taylor \& Francis, 2008
-multiplication table

\times	1	2
1	1	2
2	2	1

-generators of 2?

Crystallographic symmetry operations in the plane

Mirror symmetry operation

drawing: M.M. Julian

Mirror line m_{y} at $\mathbf{0 , y}$

Matrix representation

$$
\left.m_{y} \begin{array}{|c|}
\hline x \\
\hline y \\
\hline
\end{array}=\begin{array}{|l|}
\hline-x \\
\hline y \\
\hline-1 \\
\hline
\end{array} \right\rvert\, \begin{array}{|l|}
\hline x \\
\hline y \\
\hline
\end{array}
$$

det

Crystallographic Point Groups in 2D

Point group $\mathrm{m}=\{1, \mathrm{~m}\}$

Motif with symmetry of m

drawing: M.M. Julian
Foundations of Crystallography
(c) Taylor \& Francis, 2008
-group axioms?

-order of m ?
-multiplication table

-generators of m ?

Point group $2=\{1,2\}$

Point group $\mathrm{m}=\{1, \mathrm{~m}\}$

\times	1	m_{y}
1	1	m_{y}
m_{y}	m_{y}	1

-groups with the same multiplication table

Example (Problem I.6.I.I)

Consider the model of the molecule of the organic semiconductor pentacene $\left(\mathrm{C}_{22} \mathrm{H}_{14}\right)$:

Determine:
-symmetry operations: matrix and (x, y) presentation
-generators
-multiplication table

Exercise I.6.I. 3

Consider the symmetry group of the equilateral triangle. Determine:

-symmetry operations: matrix and (x, y) presentation
-generators
-multiplication table

SEITZ SYMBOLS FOR SYMMETRY OPERATIONS

point－group symmetry operation
－specify the type and the order of the symmetry operation

1 and $\overline{1} \quad$ identity and inversion
m reflections
$2, \frac{3}{3}, \frac{4}{4}$ and $\frac{6}{6} \quad \begin{aligned} & \text { rotations } \\ & \text { rotoinversions }\end{aligned}$
－orientation of the symmetry element by the direction of the axis for rotations and rotoinversions，or the direction of the normal to reflection planes．

SHORT－HAND NOTATION OF SYMMETRY OPERATIONS

包 $=R$ 周 $=$ 閭固
$x^{\prime}=R_{11} x+R_{12} y$
$y^{\prime}=R_{21} x+R_{22} y$
－left－hand side：omitted －coefficients 0，＋I，－I －different rows in one line， separated by commas

Problem I.6.I. 2

Consider the symmetry group of the square. Determine:

symmetry operations: matrix and (x,y) presentation
generators
multiplication table

Visualization of Crystallographic Point Groups (3D)

- general position diagram
- symmetry elements diagram

Stereographic Projections

Symmetry-elements diagrams

Rotation axes

rer planes
-are lines which intersect the upper hemisphere as points

> filled polygons with the same number of sides as the foldness of the axes
-symmetry point of the point group is placed in the centre of the sphere
-intersections of the upper hemisphere of the symmetry elements of the point group (rotation axes, mirror planes) are projected on the stereonet plane

2 mm
-intersect the upper hemisphere as great circles: horizontal and vertical mirror planes

Combinations of symmetry elements

- line of intersection of any two mirror planes must be a rotation axis.

EXAMPLE

Stereographic Projections of mm2 (3D)

Point group mm2 $=\left\{1,2, m_{10}, m_{01}\right\}$

Molecule of pentacene

Stereographic projections diagrams
general position
symmetry elements

EXAMPLE

Stereographic Projections of 3m (3D)

Point group $\mathbf{3 m}=$ $\left\{1,3^{+}, 3^{-}, m_{10}, m_{01}, m_{11}\right\}$

Stereographic projections diagrams
general position?
symmetry elements

Problem I.6.I. 2 (cont.)

Stereographic Projections of 4 mm

general position diagram
symmetry elements diagram

$$
m_{10} \stackrel{4^{+}}{\sim} m_{01}
$$

$$
\mathrm{mol}
$$

Conjugate elements

Conjugate elements
$g_{i} \sim g_{k}$ if $\exists g^{\prime} g^{-1} g_{i f}=g_{k}$, where $\mathrm{g}, \mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{k}}, \in \mathrm{G}$

Classes of conjugate elements

$$
L\left(g_{i}\right)=\left\{g_{i} \mid g^{-1} g_{i j} g=g_{i}, g \in G\right\}
$$

Conjugation-properties

(i) $L\left(g_{i}\right) \cap L\left(g_{i}\right)=\{\varnothing\}$, if $g_{i} \notin L\left(g_{i}\right)$
(ii) $\left|\mathrm{L}\left(\mathrm{g}_{\mathrm{i}}\right)\right|$ is a divisor of $|\mathrm{G}| \quad$ (iii) $L(e)=\{e\}$
(iv) if $g_{i}, g_{i} \in L$, then $\left(g_{i}\right)^{k}=\left(g_{i}\right)^{k}=e$

Problem I.6.I. 2 (cont.)

Classes of conjugate elements
Distribute the symmetry operations of the group of the square $\mathbf{4 m m}$ into classes of conjugate elements

	1	2	4^{+}	4^{-}	m_{10}	m_{01}	m_{11}	$m_{1 \overline{1}}$
1	1	2	4^{+}	4^{-}	m_{10}	m_{01}	m_{11}	$m_{1 \overline{1}}$
2	2	1	4^{-}	4^{+}	m_{01}	m_{10}	$m_{1 \overline{1}}$	m_{11}
4^{+}	4^{+}	4^{-}	2	1	m_{11}	$m_{1 \overline{1}}$	m_{01}	m_{10}
4^{-}	4^{-}	4^{+}	1	2	$m_{1 \overline{1}}$	m_{11}	m_{10}	m_{01}
m_{10}	m_{10}	m_{01}	$m_{1 \overline{1}}$	m_{11}	1	2	4^{-}	4^{+}
m_{01}	m_{01}	m_{10}	m_{11}	$m_{1 \overline{1}}$	2	1	4^{+}	4^{-}
m_{11}	m_{11}	$m_{1 \overline{1}}$	m_{10}	m_{01}	4^{+}	4^{-}	1	2
$m_{1 \overline{1}}$	$m_{1 \overline{1}}$	m_{11}	m_{01}	m_{10}	4^{-}	4^{+}	2	1

Hint: $g_{i} \sim g_{k}$ if $\exists g: g^{-1} g_{i} g=g_{k}$

Example (Problem I.6.I.3 (cont.))

Classes of conjugate elements

Distribute the symmetry operations of the group of the equilateral triangle $3 \boldsymbol{m}$ into classes of conjugate elements

Point group $3 \mathrm{~m}=$
$\left\{1,3^{+}, 3^{-}, \mathrm{m}_{10}, \mathrm{~m}_{01}, \mathrm{~m}_{11}\right\}$
Multiplication table of 3 m

	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
1	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
3^{+}	3^{+}	3^{-}	1	m_{11}	m_{10}	m_{01}
3^{-}	3^{-}	1	3^{+}	m_{01}	m_{11}	m_{10}
m_{10}	m_{10}	m_{01}	m_{11}	1	3^{+}	3^{-}
m_{01}	m_{01}	m_{11}	m_{10}	3^{-}	1	3^{+}
m_{11}	m_{11}	m_{10}	m_{01}	3^{+}	3^{-}	1

GROUP-SUBGROUP RELATIONS

I. Subgroups: index, coset decomposition and normal subgroups
II. Conjugate subgroups
III. Group-subgroup graphs

Subgroups: Some basic results (summary)

Subgroup H < G

I. $\mathrm{H}=\left\{\mathrm{e}, \mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{k}}\right\} \subset \mathrm{G}$
2. H satisfies the group axioms of G

Proper subgroups $\mathrm{H}<\mathrm{G}$, and trivial subgroup: $\{\mathrm{e}\}, \mathrm{G}$
Index of the subgroup H in $\mathrm{G}:[\mathrm{i}]=|\mathrm{G}| /|\mathrm{H}|$ (order of G)/(order of H)

Maximal subgroup H of G
NO subgroup Z exists such that:

$$
H<Z<G
$$

Example

Subgroups of point groups

Molecule of pentacene

Subgroups of mm2

Subgroup graph

$$
m m 2=\left\{1,2, m_{10}, m_{01}\right\}
$$

1

2

4

Problem I.6.I. 5

(i) Consider the group of the equilateral triangle and determine its subgroups;
(ii) Construct the maximal subgroup graph of 3 m

	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
1	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
3^{+}	3^{+}	3^{-}	1	m_{11}	m_{10}	m_{01}
3^{-}	3^{-}	1	3^{+}	m_{01}	m_{11}	m_{10}
m_{10}	m_{10}	m_{01}	m_{11}	1	3^{+}	3^{-}
m_{01}	m_{01}	m_{11}	m_{10}	3^{-}	1	3^{+}
m_{11}	m_{11}	m_{10}	m_{01}	3^{+}	3^{-}	1

Multiplication table of 3m

Coset decomposition G:H

Group-subgroup pair H < G

left coset decomposition

$\mathrm{G}=\mathrm{H}+\mathrm{g}_{2} \mathrm{H}+\ldots+\mathrm{g}_{\mathrm{m}} \mathrm{H}, \mathrm{g}_{\mathrm{i}} \notin \mathrm{H}$, $m=$ index of H in G
right coset decomposition
$\mathrm{G}=\mathrm{H}+\mathrm{Hg}_{2}+\ldots+\mathrm{Hg}_{\mathrm{m}}, \mathrm{g}_{\mathrm{i}} \notin \mathrm{H}$ $m=$ index of H in G

Coset decomposition-properties
(i) $\mathrm{g}_{\mathrm{i}} \mathrm{H} \cap \mathrm{g}_{\mathrm{j}} \mathrm{H}=\{\varnothing\}$, if $\mathrm{g}_{\mathrm{i}} \notin \mathrm{g}_{\mathrm{j}} \mathrm{H}$
(ii) $\left|g_{i} \mathrm{H}\right|=|\mathrm{H}|$
(iii) $\mathrm{g}_{\mathrm{i}} \mathrm{H}=\mathrm{g}_{\mathrm{i}} \mathrm{H}, \mathrm{g}_{\mathrm{i}} \in \mathrm{g}_{\mathrm{i}} \mathrm{H}$

Coset decomposition G:H

Normal subgroups

$$
\mathrm{Hg}_{\mathrm{i}}=\mathrm{g}_{\mathrm{j}} \mathrm{H}, \text { for all } \mathrm{g}_{\mathrm{i}}=\mathrm{I}, \ldots,[\mathrm{i}]
$$

Theorem of Lagrange

group G of order $|G|$
subgroup $H<G$ of order $|H|$ then

Corollary

$|\mathrm{H}|$ is a divisor of $|\mathrm{G}|$ and $[\mathrm{i}]=|\mathrm{G}: \mathrm{H}|$

The order k of any element of G, $g^{k}=e$, is a divisor of $|G|$

Example:

Coset decompositions of $3 m$

	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
1	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
3^{+}	3^{+}	3^{-}	1	m_{11}	m_{10}	m_{01}
3^{-}	3^{-}	1	3^{+}	m_{01}	m_{11}	m_{10}
m_{10}	m_{10}	m_{01}	m_{11}	1	3^{+}	3^{-}
m_{01}	m_{01}	m_{11}	m_{10}	3^{-}	1	3^{+}
m_{11}	m_{11}	m_{10}	m_{01}	3^{+}	3^{-}	1

Multiplication table of $3 m$

Consider the subgroup $\left\{I, m_{10}\right\}$ of $3 m$ of index 3 . Write down and compare the right and left coset decompositions of 3 m with respect to $\left\{I, m_{10}\right\}$.

Problem I.6.I. 7

Demonstrate that H is always a normal subgroup if $|\mathrm{G}: \mathrm{H}|=2$.

Conjugate subgroups

Conjugate subgroups Let $\mathrm{H}_{1}<\mathrm{G}, \mathrm{H}_{2}<\mathrm{G}$

$$
\text { then, } \mathrm{H}_{1} \sim \mathrm{H}_{2} \text {, if } \exists \mathrm{g} \in \mathrm{G}: g^{-1} \mathrm{H}_{1} g=\mathrm{H}_{2}
$$

(i) Classes of conjugate subgroups: $\mathrm{L}(\mathrm{H})$
(ii) If $\mathrm{H}_{1} \sim \mathrm{H}_{2}$, then $\mathrm{H}_{1} \cong \mathrm{H}_{2}$
(iii) $|\mathrm{L}(\mathrm{H})|$ is a divisor of $|\mathrm{G}| /|\mathrm{H}|$

Normal subgroup

$$
\mathrm{H} \triangleleft \mathrm{G} \text {, if } \mathrm{g}^{-1} \mathrm{Hg}=\mathrm{H} \text {, for } \forall g \in \mathrm{G}
$$

Problem I.6.I. 5 (cont.)

Consider the subgroups of 3 m and distribute them into classes of conjugate subgroups

	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
1	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
3^{+}	3^{+}	3^{-}	1	m_{11}	m_{10}	m_{01}
3^{-}	3^{-}	1	3^{+}	m_{01}	m_{11}	m_{10}
m_{10}	m_{10}	m_{01}	m_{11}	1	3^{+}	3^{-}
m_{01}	m_{01}	m_{11}	m_{10}	3^{-}	1	3^{+}
m_{11}	m_{11}	m_{10}	m_{01}	3^{+}	3^{-}	1

Multiplication table of $3 m$

Complete and contracted group-subgroup graphs

Complete graph of maximal subgroups

Contracted graph of maximal subgroups

International Tables for Crystallography,Vol.A, Chapter 3.2 Group-subgroup relations of point groups

Fig. 10.1.3.2. Maximal subgroups and minimal supergroups of the three-dimensional crystallographic point groups. Solid lines indicate maximal normal subgroups; double or triple solid lines mean that there are two or three maximal normal subgroups with the same symbol. Dashed lines refer to sets of maximal conjugate subgroups. The group orders are given on the left. Full Hermann-Mauguin symbols are used.

EXERCISES

Problem I.6.I. 4

Consider the group of the square and determine its subgroups

	1	2	4^{+}	4^{-}	m_{10}	m_{01}	m_{11}	$m_{1 \overline{1}}$
1	1	2	4^{+}	4^{-}	m_{10}	m_{01}	m_{11}	$m_{1 \overline{1}}$
2	2	1	4^{-}	4^{+}	m_{01}	m_{10}	$m_{1 \overline{1}}$	m_{11}
4^{+}	4^{+}	4^{-}	2	1	m_{11}	$m_{1 \overline{1}}$	m_{01}	m_{10}
4^{-}	4^{-}	4^{+}	1	2	$m_{1 \overline{1}}$	m_{11}	m_{10}	m_{01}
n_{10}	m_{10}	m_{01}	$m_{1 \overline{1}}$	m_{11}	1	2	4^{-}	4^{+}
n_{01}	m_{01}	m_{10}	m_{11}	$m_{1 \overline{1}}$	2	1	4^{+}	4^{-}
n_{11}	m_{11}	$m_{1 \overline{1}}$	m_{10}	m_{01}	4^{+}	4^{-}	1	2
$n_{1 \overline{1}}$	$m_{1 \overline{1}}$	m_{11}	m_{01}	m_{10}	4^{-}	4^{+}	2	1

Multiplication table of $\mathbf{4 m m}$

FACTOR GROUP

Factor group

product of sets: $G=\left\{e, g_{2}, \ldots, g_{p}\right\} \quad\left\{K_{k}=\left\{g_{k 1}, g_{k 2}, \ldots, g_{k m}\right\}\right.$
$K_{j} K_{k}=\left\{g_{j p} g_{k q}=g_{r} \mid g_{i p} \in K_{j}, g_{k q} \in K_{k}\right\}$
Each element g_{r} is taken only once in the product $\mathrm{K}_{\mathrm{j}} \mathrm{K}_{\mathrm{k}}$
factor group $\mathrm{G} / \mathrm{H}: \quad \mathrm{H} \triangleleft \mathrm{G}$

$$
\begin{aligned}
& \mathrm{G}=\mathrm{H}+\mathrm{g}_{2} \mathrm{H}+\ldots+\mathrm{g}_{\mathrm{m}} \mathrm{H}, \mathrm{gi} \nexists \mathrm{H}, \\
& \mathrm{G} / \mathrm{H}=\left\{\mathrm{H}, \mathrm{~g}_{2} \mathrm{H}, \ldots, \mathrm{~g}_{\mathrm{m}} \mathrm{H}\right\}
\end{aligned}
$$

group axioms:
(i) $\left(g_{i j} H\right)\left(g_{j} H\right)=g_{i j} H$
(ii) $\left(g_{i} H\right) H=H\left(g_{i} H\right)=g_{i} H$
(iii) $\left(g_{i} H\right)^{-1}=\left(g_{i}^{-1}\right) H$

Example:

Factor group 3m/3

(i) coset decomposition $\{1,3+, 3-\},\left\{\mathrm{m}_{10}, \mathrm{~m}_{01}, \mathrm{~m}_{1}\right\}$

E
(ii) factor group and multiplication table

A

	E	A
E	E	A
A	A	E

Problem I.6.I. 6

Consider the normal subgroup $\{\mathrm{e}, 2\}$ of 4 mm , of index 4 , and the coset decomposition 4 mm : $\{\mathrm{e}, 2\}$:
(3) Show that the cosets of the decomposition $4 m m:\{e, 2\}$ fulfill the group axioms and form a factor group
(4) Multiplication table of the factor group
(5) A crystallographic point group isomorphic to the factor group?

GENERAL AND SPECIAL WYCKOFF POSITIONS

General and special Wyckoff positions

Orbit of a point X_{o} under $P: P\left(X_{\circ}\right)=\left\{W X_{o}, W \in P\right\}$ Multiplicity
Site-symmetry group $S_{0}=\{W\}$ of a point X_{\circ}

Multiplicity: $|\mathrm{P}| /\left|\mathrm{S}_{\mathrm{o}}\right|$

General position X_{0}

$$
S_{0}=1=\{1\}
$$

Multiplicity: $|\mathrm{P}|$

Special position X_{\circ}
$S_{0}>1=\{I, \ldots$,
Multiplicity: $\left|\mathrm{P} / /\left|\mathrm{S}_{\mathrm{o}}\right|\right.$

Site-symmetry groups: oriented symbols

Example

General and special Wyckoff positions
Point group $2=\{1,2001\}$
Site-symmetry group $S_{o}=\{W\}$ of a point $X_{o}=(0,0, z)$

$$
\begin{aligned}
& S_{\circ}=2 \\
& W X_{\circ}=X_{0}
\end{aligned}
$$

Multiplicity: $|\mathrm{P}| /\left|\mathrm{S}_{\mathrm{o}}\right|$

$$
2 \text { b l (x,y,z) } \quad(-x,-y, z)
$$

$$
\text { I a } 2(0,0, z)
$$

Problem I.6.I. 8

General and special Wyckoff positions

Determine the general and special Wyckoff positions of the group mm2

Stereographic projections diagrams

symmetry elements

EXERCISES

Problem I.6.I. 9

Consider the symmetry group of the square 4 mm and the point group 422 that is isomorphic to it.

Determine the general and special Wyckoff positions of the two groups.

Hint: The stereographic projections could be rather helpful

Group-subgroup relations

 splitting schemes
Group-subgroup pair $\mathrm{mm} 2>2$, [i]=2

 mm2

4 d $1 \quad(x, y, z)$

$$
(-x,-y, z)
$$

$$
(x,-y, z)
$$

$$
(-x, y, z)
$$

$$
\underbrace{\substack{\begin{subarray}{c}{ \\
x,-y, z=x_{2}, y_{2}, z_{2} \\
-x, y, z=-x_{2},-y_{2}, z_{2}} }}} 2 \text { b l }
$$

GROUP-

SUPERGROUP

 RELATIONS
Supergroups: Some basic results (summary)

Supergroup G>H

$$
\mathrm{H}=\left\{\mathrm{e}, \mathrm{~h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{k}}\right\} \subset \mathrm{G}
$$

Proper supergroups G>H, and trivial supergroup: H

Index of the group H in supergroup G: $[i]=|\mathrm{G}| /|\mathrm{H}|$ (order of G)/(order of H)

Minimal supergroups G of H
NO subgroup Z exists such that:

$$
H<Z<G
$$

The Supergroup Problem

Given a group-subgroup pair $\mathrm{G}>\mathrm{H}$ of index [i]

Determine: all $\mathrm{G}_{\mathrm{k}}>\mathrm{H}$ of index [i], $\mathrm{G}_{\mathrm{i}} \simeq \mathrm{G}$

all $\mathrm{G}_{\mathrm{k}}>\mathrm{H}$ contain H as subgroup

$$
\mathrm{G}_{\mathrm{k}}=\mathrm{H}+\mathrm{g}_{2} \mathrm{H}+\ldots+\mathrm{g}_{\mathrm{ik}} \mathrm{H}
$$

Example: Supergroup problem

Group-subgroup pair $422>222$

How many are the subgroups
222 of 422 ?

Supergroups 422 of the group 222

422

222

How many are the supergroups 422 of 222 ?

Example: Supergroup problem

Group-subgroup pair $422>222$

$$
\begin{aligned}
& 4 z 22=2_{z} 2_{x} 2_{y}+4 z\left(2_{z} 2_{x} 2_{y}\right) \\
& 4 z 22=2_{z} 2+2-4 z\left(2_{z} 2+2-\right)
\end{aligned}
$$

Supergroups 422 of the group 222

$$
\begin{aligned}
& 4_{z} 22=222+4_{z} 222 \\
& 4 y 22=222+4_{y} 222 \\
& 4_{x} 22=222+4_{x} 222
\end{aligned}
$$

NORMALIZERS

Normalizer of $\mathrm{H}<\mathrm{G}$

$\left\{\mathrm{e}, 2,4,4^{-1}, \mathrm{~m}_{\mathrm{x}}, \mathrm{m}_{\mathrm{y}}, \mathrm{m}_{+}, \mathrm{m}_{-}\right\}$

$\left\{1, m_{+}\right\}$

Normalizer of $\left\{1, m_{+}\right\}$ in 4 mm

$2 m m=\left\{e, 2, m_{+}, m_{-}\right\}$

Normalizer of H in G

Normal subgroup

$$
H \triangleleft G \text {, if } g^{-1} H g=H \text {, for } \forall g \in G
$$

Normalizer of H in $\mathrm{G}, \mathrm{H}<\mathrm{G}$

$$
\begin{aligned}
& N_{G}(H)=\left\{g \in G, \text { if } g^{-1} \mathrm{Hg}=\mathrm{H}\right\} \\
& G \geq N_{G}(H) \geq H
\end{aligned}
$$

What is the normalizer $\mathrm{N}_{\mathrm{G}}(\mathrm{H})$ if $\mathrm{H} \triangleleft \mathrm{G}$?
Number of subgroups $\mathrm{H}_{\mathrm{i}}<\mathrm{G}$ in a conjugate class

$$
\mathrm{n}=\left[\mathrm{G}: \mathrm{N}_{\mathrm{G}}(\mathrm{H})\right]
$$

Problem I.6.1.I5

Consider the group $4 m m$ and its subgroups of index 4. Determine their normalizers in 4 mm . Distribute the subgroups into conjugacy classes with the help of their normalizers in 4 mm .

	$1 \quad 2 \quad 4 \quad 4^{-1} m_{x} m_{+} m_{y} m_{-}$
1 2 4 4^{-1} m_{x} m_{+} m_{y} m_{-}	$\left\|\begin{array}{cccccccc} 1 & 2 & 4 & 4^{-1} & m_{x} & m_{+} & m_{y} & m_{-} \\ 2 & 1 & 4^{-1} & 4 & m_{y} & m_{-} & m_{x} & m_{+} \\ 4 & 4^{-1} & 2 & 1 & m_{+} & m_{y} & m_{-} & m_{x} \\ 4^{-1} & 4 & 1 & 2 & m_{-} & m_{x} & m_{+} & m_{y} \\ m_{x} & m_{y} & m_{-} & m_{+} & 1 & 4^{-1} & 2 & 4 \\ m_{+} & m_{-} & m_{x} & m_{y} & 4 & 1 & 4^{-1} & 2 \\ m_{y} & m_{x} & m_{+} & m_{-} & 2 & 4 & 1 & 4^{-1} \\ m_{-} & m_{+} & m_{y} & m_{x} & 4^{-1} & 2 & 4 & 1 \end{array}\right\|$

Multiplication table of 4 mm
Hint: The stereographic projections could be rather helpful

CRYSTALLOGRAPHIC

 POINT GROUPS IN 2D AND 3D (BRIEF OVERVIEW)
Crystallographic symmetry operations

Problem I.6.I.II

Crystallographic restriction theorem

The rotational symmetries of a crystal pattern are limited to 2 -fold, 3 -fold, 4 -fold, and 6 -fold.

Matrix proof:

Rotation with respect to orthonormal basis

Rotation with respect to lattice basis

R : integer matrix

In a lattice basis, because the rotation must map lattice points to lattice points, each matrix entry and hence the trace - must be an integer.

m	$m / 2=\cos \theta$	$\theta\left({ }^{\circ}\right)$	$n=360^{\circ} / \theta$
0	0	90	Fourfold
1	$1 / 2$	60	Sixfold
2	1	$0=360$	Identity (onefold)
-1	$-1 / 2$	120	Threefold
-2	-1	180	Twofold

CRYSTALLOGRAPHIC POINT GROUPS IN THE PLANE

Crystallographic symmetry operations in 2D

Operations of the first kind (no change of handedness)

Element Rotation point	Operation Rotation
1	$2 \pi / 1$
2	$2 \pi / 2$
3	$2 \pi / 3$
4	$2 \pi / 4$
6	$2 \pi / 6$

Operations of the second kind (change of handedness)

Element
Reflection line (mirror) $m \quad m$

Crystallographic point groups in 2D?

Crystallographic Point Groups in 2D

Point group $1=\{1\}$

Motif with symmetry of 1

-group axioms?

$$
\begin{aligned}
& \mathbf{I} \times \mathbf{I}=\frac{11}{\square} \times \frac{1}{\square} 1 \\
& \\
& \text {-order of } \mathbf{1} \text { ? }
\end{aligned}
$$

-multiplication table

-generators of 1 ?

Crystallographic Point Groups in 2D

Point group $2=\{1,2\}$

-group axioms?
Motif with symmetry of 2

-order of 2?
-multiplication table

\times	1	2
1	1	2
2	2	1

-generators of 2?

Crystallographic Point Groups in 2D

Point group $\mathrm{m}=\{1, \mathrm{~m}\}$

Motif with symmetry of m
 is the line?
-group axioms?

-order of m ?
Where mirror
-multiplication table

-generators of m ?

Crystallographic Point Groups in 2D

Point group $2 \mathrm{~mm}=\left\{1,2, \mathrm{~m}_{\mathrm{x}}, \mathrm{m}_{\mathrm{y}}\right\}$

Molecule of pentacene

-order of 2 mm ?
-group axioms?

$$
m_{y} \times 2=\begin{array}{|l|l|}
\hline-1 & \\
\hline & 1 \\
\hline & -1 \\
\hline-1 & \\
\hline & \begin{array}{|l|l|}
\hline 1 & \\
\hline & -1 \\
\hline
\end{array}=m_{x} .
\end{array}
$$

-multiplication table
-generators of mm?

\times	1	2	m_{x}	m_{y}
1	1	2	m_{x}	m_{y}
2	2	1	m_{y}	m_{x}
m_{x}	m_{x}	m_{y}	1	2
m_{y}	m_{y}	m_{x}	2	1

Crystallographic Point Groups in 2D

Group of the Point group equilateral triangle $\quad 3 m=\left\{1,3^{+}, 3^{-}, m_{10}, m_{01}, m_{11}\right\}$

	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
1	1	3^{+}	3^{-}	m_{10}	m_{01}	m_{11}
3^{+}	3^{+}	3^{-}	1	m_{11}	m_{10}	m_{01}
3^{-}	3^{-}	1	3^{+}	m_{01}	m_{11}	m_{10}
m_{10}	m_{10}	m_{01}	m_{11}	1	3^{+}	3^{-}
m_{01}	m_{01}	m_{11}	m_{10}	3^{-}	1	3^{+}
m_{11}	m_{11}	m_{10}	m_{01}	3^{+}	3^{-}	1

Multiplication table of 3 m

Hermann-Mauguin symbolism (International Tables A)

A direction is called a symmetry direction of a crystal structure if it is parallel to an axis of rotation or to the normal of a reflection.

A symmetry direction is thus the direction of the geometric element of a symmetry operation, when the normal of a symmetry plane is used for the description of its orientation.
-symmetry elements along primary, secondary and tertiary
symmetry directions

rotations:

by the axes of rotation
reflections:
by the normals to the planes

Lattice	Symmetry direction (position in HermannMauguin symbol)		
	Primary	Secondary	Tertiary
Two dimensions			
Oblique 1,2	Rotation point in plane		
Rectangular m, 2 mm		[10]	[01]
Square $\quad 4,4 \mathrm{~mm}$		$\left\{\begin{array}{l}{[10]} \\ {[01]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1}]} \\ {[11]}\end{array}\right\}$
$\begin{array}{ll}\text { Hexagonal } & 3,3 \mathrm{~m} \\ & 6,6 \mathrm{~mm}\end{array}$		$\left\{\begin{array}{c}{[10]} \\ {[01]} \\ {[\overline{1} 1]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1}]} \\ {[12]} \\ {[\overline{2} \overline{1}]}\end{array}\right\}$

Symmetry Directions

$$
\begin{gathered}
\begin{array}{c}
\text { symmetry } \\
\text { directions } \\
<10>
\end{array}<1 \overline{1}> \\
{[10]} \\
{[1 \overline{1}]} \\
{[01]}
\end{gathered} \quad[11] \quad .
$$

symmetry directions

<10> <1 $\overline{1}\rangle$
[10] [1"]
[01] [21]
[11] [12]

Example

Symmetry-elements diagrams

and

General-positions diagrams
of the
plane point groups.

Problem I.6.I.I4

Consider the following 10 figures of the symmetry elements and the general positions of the plane point groups.

1. Determine the order of the point groups and arrange them vertically by descending pointgroup orders (i.e. the point group of highest order at the top, and that of lowest order at the bottom).
2. Determine the complete group-subgroup graph for all plane point groups.
3. Consider the point group 2 mm . Determine its maximal subgroups, its minimal supergroups and the corresponding indices.

CRYSTALLOGRAPHIC POINT GROUPS IN 3D

(brief overview)

Crystallographic Point Groups in 3D

Proper rotations: det =+I: I 2346
chirality preserving

Improper rotations: det $=-$ I: $\overline{1} \overline{2}=m \quad \overline{3} \quad \overline{4} \quad \overline{6}$

Chirality and chiral objects

Lord Kelvin (I884) "I called any geometrical figure or group of points 'chiral' and say it has chirality if its image in a plane mirror ideally realized, cannot be brought to coincide with itself."
A chiral molecule/object is non-superimposable on its mirror image. The mirror images of a chiral molecule/object are called enantiomers.

The term chirality is derived from the Greek word for hand, $\chi \varepsilon \iota \rho$ (kheir).
symmetry operations:
first kind (det=+l): does not change the chirality of a chiral object second kind (det $=-I$): change the chirality of a chiral object

Symmetry operations in 3D Rotations

Rotation (around an axis)

Rotation of order $n=$ rotation by $\varphi=\frac{2 \pi}{n}$

$$
\alpha(n)=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\operatorname{Det}=+1$

Symmetry operations in 3D Inversion

Inversion (through a point)

a crystal which has the inversion symmetry is called centrosymmetrical.

$$
\alpha(\overline{1})=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { Det }=-1
$$

Symmetry operations in 3D Reflection

Reflection (through a mirror plane)

Note that: $m=\overline{2}$!

$$
\alpha(\overline{1})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Det $=-1$

Equivalence of $\mathbf{2}$ and \boldsymbol{m}

Symmetry operations in 3D Rotoinversions

Roto-inversion

(around an axis and through a point) Rotation followed by an inversion

$$
\alpha(\bar{n})=\left(\begin{array}{ccc}
-\cos \varphi & \sin \varphi & 0 \\
-\sin \varphi & -\cos \varphi & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Det $=-1$

Crystallographic Point Groups in 3D

System used in this volume				Trigonal	3		
	Point group		Schoenflies symbol		32	32	
	International symbol						
	Short	Full			$3 m$	$3 m$	$C_{3 v}$
Triclinic	$\frac{1}{1}$	$\frac{1}{1}$	$\begin{aligned} & C_{1} \\ & C_{i}\left(S_{2}\right) \end{aligned}$		$\overline{3} m$	$\overline{3} \frac{2}{m}$	$D_{3 d}$
Monoclinic	2 m $2 / m$	2 m $\frac{2}{m}$	$\begin{aligned} & \hline C_{2} \\ & C_{s}\left(C_{1 h}\right) \\ & C_{2 h} \end{aligned}$	Hexagonal	$\begin{aligned} & \frac{6}{\overline{6}} \\ & 6 / m \end{aligned}$	$\begin{aligned} & \hline 6 \\ & \frac{6}{m} \\ & \frac{6}{m} \end{aligned}$	$\begin{aligned} & C_{6} \\ & C_{3 h} \\ & C_{6 h} \end{aligned}$
Orthorhombic	222 mm 2 mmm	222 mm 2 $\frac{2}{m} \frac{2}{m} \frac{2}{m}$	$\begin{aligned} & D_{2}(V) \\ & C_{2 v} \\ & D_{2 h}\left(V_{h}\right) \end{aligned}$		$\begin{aligned} & 622 \\ & 6 \mathrm{~mm} \\ & \overline{6} 2 \mathrm{~m} \end{aligned}$	622 6 mm $\overline{6} 2 \mathrm{~m}$ 622	$\begin{aligned} & D_{6} \\ & C_{6 v} \\ & D_{3 h} \end{aligned}$
Tetragonal	$\frac{4}{4}$	4	C_{4}		6/mmm	$\bar{m} \bar{m} \bar{m}$	$D_{6 h}$
	$\overline{4}$	$\overline{4}$	S_{4}	Cubic	23	23	T
	$\begin{aligned} & 4 / m \\ & 422 \end{aligned}$	\bar{m} 422	$C_{4 h}$ D_{4}		$m \overline{3}$	$\frac{2}{m} \overline{3}$	T_{h}
	$4 \mathrm{~mm}$	4 mm	$C_{4 v}$		432	432	O
	$\overline{4} 2 m$	$\begin{aligned} & \overline{4} 2 m \\ & \underline{4} 2 \underline{2} \end{aligned}$	$D_{2 d}\left(V_{d}\right)$		$\overline{4} 3 \mathrm{~m}$	$\overline{4} 3 m$	T_{d}
Internatio	4/mmm	mmm	$D_{4 h}$ $y, V o l . ~ A ~$		$m \overline{3} m$	$\frac{4}{m} \overline{3} \frac{2}{m}$	O_{h}

Hermann-Mauguin symbolism (International Tables A)

-symmetry elements along primary, secondary and ternary symmetry directions
rotations: by the axes of rotation planes: by the normals to the planes

- rotations/planes along the same direction
- full/short Hermann-Mauguin symbols
-symmetry elements in decreasing order of symmetry (except for two cubic groups: 23 and m $\overline{3}$)

Crystal systems and Crystallographic point groups

Crystal system	Crystallographic point groups \dagger	Restrictions on cell parameters	primary	secondary	ternary
Triclinic	1, 1	None	None		
Monoclinic	2,m, 2/m	b-unique setting $\alpha=\gamma=90^{\circ}$	[010] ('unique axis b') [001] ('unique axis c')		
		c-unique setting $\alpha=\beta=90^{\circ}$			
Orthorhombic	222, mm2, mmm	$\alpha=\beta=\gamma=90^{\circ}$	[100]	[010]	[001]
Tetragonal	$\begin{aligned} & 4, \overline{4}, 4 / \mathrm{m} \\ & 422,4 \mathrm{~mm}, \overline{4} 2 \mathrm{~m}, \\ & 4 / \mathrm{mmm} \end{aligned}$	$\begin{aligned} & a=b \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[110]}\end{array}\right\}$

Crystal systems and
 Crystallographic point groups

Crystal system	Crystallographic point groups \dagger	Restrictions on cell parameters	primary	secondary	ternary
Trigonal	$\begin{aligned} & 3, \overline{3} \\ & 32,3 m, \overline{3} m \end{aligned}$	$\begin{aligned} & a=b \\ & \alpha=\beta=90^{\circ}, \gamma=120^{\circ} \\ & \bar{a}=\bar{b}=c \\ & \alpha=\beta=\gamma \\ & \text { (rhombohedral axes, } \\ & \text { primitive cell) } \\ & a=b \\ & \alpha=\beta=90^{\circ}, \gamma=120^{\circ} \\ & \text { (hexagonal axes, } \\ & \text { triple obverse cell) } \end{aligned}$			
			[111]	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[01 \overline{1}]} \\ {[\overline{1} 01]}\end{array}\right\}$	
			[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[110]}\end{array}\right\}$	
Hexagonal	$\begin{aligned} & 6, \overline{6}, 6 / \mathrm{m} \\ & 622,6 \mathrm{~mm}, \overline{6} 2 \mathrm{~m}, \\ & 6 / \mathrm{mmm} \end{aligned}$	$\begin{aligned} & a=b \\ & \alpha=\beta=90^{\circ}, \gamma=120^{\circ} \end{aligned}$	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[\overline{1} 10]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[120]} \\ {[\overline{2} \overline{1} 0]}\end{array}\right\}$
Cubic	$\begin{aligned} & 23, m \overline{3} \\ & 432, \overline{4} 3 m, m \overline{3} m \end{aligned}$	$\begin{aligned} & a=b=c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[001]}\end{array}\right\}$	$\left\{\begin{array}{l}{\left[\begin{array}{lll}1 & 1 &] \\ {[1} & 1 & 1\end{array}\right]} \\ {\left[\begin{array}{l}1 \\ 1\end{array}\right]} \\ {[\overline{1} 1} \\ \hline\end{array}\right.$	$\left\{\begin{array}{l}{[1 \overline{1} 0][110]} \\ {[01 \overline{1}][011]} \\ {[\overline{101}][101]}\end{array}\right\}$

Rotation Crystallographic Point Groups in 3D

Cyclic: $\mathrm{I}\left(\mathrm{C}_{1}\right), 2\left(\mathrm{C}_{2}\right), 3\left(\mathrm{C}_{3}\right), 4\left(\mathrm{C}_{4}\right), 6\left(\mathrm{C}_{6}\right)$

Dihedral: 222($\left.\mathrm{D}_{2}\right), 32\left(\mathrm{D}_{3}\right), 422\left(\mathrm{D}_{4}\right), 622\left(\mathrm{D}_{6}\right)$

Cubic: 23 (T), 432 (O)

Dihedral Point Groups

$\left\{\mathrm{e}, 6_{\mathrm{z}}, 6_{\mathrm{Z}}^{-}, 3_{\mathrm{z}}, 3_{\mathrm{z}}^{-}, 2_{\mathrm{z}}\right.$
$\left.2,2,2,2_{3}, 2_{1}^{\prime}, 2_{2}^{\prime}, 2_{3}^{\prime}\right\}$
$622\left(D_{6}\right)$

regular
hexagonal prism

1
$6001, \mathbf{6}_{001}^{-}, 3_{001}, 3_{001,}^{-2001}$
2100,2010, 2_{110},
$2_{1 \overline{10} 0}, 2_{210}, 2_{120}$

Cubic Rotational Point Groups

432(O)

Cube

23 (T)

Cubic Rotational Point Groups

regular tetrahedron

1
2100,2010,2001
$3_{111,3}^{-111,} 31 \overline{1 \pi}, 3-3 \overline{191}$

Centro-symmetrical groups

G_{1} : rotational groups $\mathrm{G}_{2}=\{I, \bar{\Gamma}\}$ group of inversion $\mathrm{G}_{1} \otimes\{\mathrm{I}, \bar{T}\}=\mathrm{G}_{\mathrm{l}}+\overline{\mathrm{T}} . \mathrm{G}_{\mid}$
$2 / m \quad\{1,2001\} \otimes\{1, \bar{T}\}=$ $\left\{1.1,2_{001.1}, 1 . \bar{T}, 2_{001 . \overline{1}}\right\}$
$\left\{1,2001, \overline{1}, \mathrm{~m}_{001}=2 / \mathrm{m}\right\}$
$\mathrm{mmm} \quad\left\{1,2_{001}, \mathrm{~m}_{100}, \mathrm{~m}_{010}\right\} \otimes\{1, \bar{T}\}=$ $\left\{1.1,2_{001.1}, m_{100.1}, m_{010.1}, 1 . \overline{1}, 2_{001} . \overline{1}, m_{100 . \overline{1}}, m_{y} . \overline{1}\right\}$ $\left\{1,2001, \mathrm{~m}_{100}, \mathrm{~m}_{010}, \overline{1}, \mathrm{~m}_{001}, 2_{100}, 2_{010}\right\}=2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$ or mmm

Direct-product groups

Let G_{1} and G_{2} are two groups. The set of all pairs $\left\{\left(g_{1}, g_{2}\right), g_{1} \in G_{1}\right.$, $\left.g_{2} \in G_{2}\right\}$ forms a group $G_{1} \otimes G_{2}$ with respect to the product: $\left(g_{1}, g_{2}\right)$ $\left(g^{\prime} 1, g^{\prime}\right)=\left(g_{1} g^{\prime} 1, g_{2} g^{\prime}\right)$.

The group $G=G_{1} \otimes G_{2}$ is called a direct-product group

Point group mm2 $=\left\{1,2001, m_{100}, m_{010}\right\}$

$$
\begin{aligned}
& \mathrm{G}_{1}=\{1,2001\} \quad \mathrm{G}_{2}=\left\{1, \mathrm{~m}_{1000}\right\} \\
& \mathrm{G}_{1} \otimes \mathrm{G}_{2}=\left\{1.1,2001.1,1 . \mathrm{m}_{100}, 2_{001} \mathrm{~m}_{100}=\mathrm{m}_{010}\right\}
\end{aligned}
$$

Crystallographic Point Groups

G	$G+\bar{I} G$	$G\left(G^{\prime}\right)$	$G+\bar{I}\left(G-G^{\prime}\right)$
$I\left(C_{1}\right)$	$I+\bar{T} . I=\bar{I} \quad\left(C_{i}\right)$	$\ldots--$	----
$2\left(C_{2}\right)$	$2+\bar{I} .2=2 / m \quad\left(C_{2 h}\right)$	$2(I)$	$m\left(C_{s}\right)$
$3\left(C_{3}\right)$	$3+\bar{T} .3=\overline{3} \quad\left(C_{3 i}\right.$ or $\left.S_{6}\right)$	$\ldots--$	$\ldots--$
$4\left(C_{4}\right)$	$4+\bar{T} .4=4 / m \quad\left(C_{4 h}\right)$	$4(2)$	$\overline{4}\left(S_{4}\right)$
$6\left(C_{6}\right)$	$6+\bar{I} .6=6 / m \quad\left(C_{6 h}\right)$	$6(3)$	$\overline{6}\left(C_{3 h}\right)$

Crystallographic Point Groups

G	G+İG	G(G') G'+T(G-G')
$222\left(\mathrm{D}_{2}\right)$	$222+\bar{T} \cdot 222=2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m})$	222(2) 2mm ($\mathrm{C}_{2 \mathrm{v}}$)
$32\left(\mathrm{D}_{3}\right)$	$32+\overline{1} .32=\overline{3} 2 / \mathrm{m} \overline{3} \mathrm{~m}\left(\mathrm{D}_{3 \mathrm{~d}}\right)$	32(3) $3 \mathrm{~m}\left(\mathrm{C}_{3 \mathrm{v}}\right)$
422 (D4)	$\begin{array}{r} 422+\mathrm{T} .422=4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ 4 / \mathrm{mmm}\left(\mathrm{D}_{4 \mathrm{~h}}\right) \end{array}$	$\begin{array}{ll} 422(4) & 4 \mathrm{~mm}\left(\mathrm{C}_{4 \mathrm{v}}\right) \\ 422(222) & \frac{4}{42 \mathrm{~m}\left(\mathrm{D}_{2 \mathrm{~d}}\right)} \end{array}$
622 (D6)	$\begin{array}{r} 622+\mathrm{T} .622=6 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \\ 6 / \mathrm{mmm}\left(\mathrm{D}_{6 \mathrm{~h}}\right) \end{array}$	$\begin{array}{ll} 622(6) & \frac{6 m m}{}\left(C_{6 v}\right) \\ 622(32) & 62 m\left(D_{3 h}\right) \end{array}$
23 (T)	$23+\overline{1} .23=2 / \mathrm{m} 3 \mathrm{~m}{ }^{\text {3 }}$ ($\mathrm{Th}^{\text {a }}$	---- -----
432 (O)	$\begin{gathered} 432+\bar{T} .432=4 / \mathrm{m} 32 / \mathrm{m} \\ \mathrm{~m} 3 \mathrm{~m}\left(\mathrm{O}_{\mathrm{h}}\right) \end{gathered}$	432(23) $\quad \overline{4} 3 \mathrm{~m}(\mathrm{Td})$

222(2) $\quad 2 \mathrm{~mm}\left(\mathrm{C}_{2 \mathrm{v}}\right)$

$222+\bar{T} .222=2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$ $\mathrm{mmm}\left(\mathrm{D}_{2 \mathrm{~h}}\right)$

Crystallographic Point Groups

Groups isomorphic to 422

422	e	$4_{z} 4_{z}^{-}$	2_{z}	$2_{x} 2_{y}$	$2+2$.	
$4 m m$	e	$4_{z} 4_{z}^{-}$	2_{z}	$m_{x} m_{y}$	$m_{+} m-$	
$\overline{4} 2 m$	e	$\overline{4}_{z}$	$\overline{4}_{z}^{-}$	2_{z}	2_{x}	2_{y}
\bar{m}^{2}	m_{+}.					
$\overline{4} m 2$	e	$\overline{4}_{z} \overline{4}_{z}^{-}$	2_{z}	$m_{x} m_{y}$	$2+2$.	

Groups isomorphic to 622

Consider the following three pairs of stereographic projections. Each of them correspond to a crystallographic point group isomorphic to 4 mm :

(i) Determine those point groups by indicating their symbols, symmetry operations and possible sets of generators;
(ii) Construct the corresponding multiplication tables; (iii) For each of the isomorphic point groups indicate the one-toone correspondence with the symmetry operations of 4 mm .

GENERATION OF CRYSTALLOGRAPHIC POINT GROUPS

Generation of point groups

Crystallographic groups are solvable groups
Composition series: $\mathrm{I} \triangleleft \mathrm{Z}_{2} \triangleleft \mathrm{Z}_{3} \triangleleft \ldots \triangleleft \mathrm{G}$ index 2 or 3

Set of generators of a group is a set of group elements such that each element of the group can be obtained as an ordered product of the generators
$W=\left(g_{h}\right)^{k_{h}} *\left(g_{h-1}\right)^{k_{h-1}} * \ldots *\left(g_{2}\right)^{k_{2}} * g_{1}$
gı - identity
g_{2}, g_{3}, \ldots - generate the rest of elements

Example
Generation of the group of the square
Composition series: $I \stackrel{2_{2}}{\triangleleft} 2 \stackrel{4_{2}}{\downarrow} 4 \stackrel{m_{x}}{m_{x}} 4 \mathrm{~mm}$

Step I:

[2]
[2]
[2]

$$
I=\{I\}
$$

Step 2:

$$
\mathbf{2}=\{I\}+2_{z}\{I\}
$$

Step 3:

$$
4=\{1,2\}+4 z\{1,2\}
$$

Step 4:
$4 m m=4+m_{x} 4$

	1	2	4	4^{-1}	$m_{x} m_{+} m_{y} m_{-}$	
1	1	2	4	4^{-1}	m_{x}	m_{+}

Multiplication table of 4 mm

Generation of sub-cubic point groups

Composition series of cubic point groups and their subgroups

HM Symbol	SchoeSy	generators	compos. series
1	\mathcal{C}_{1}	1	1
$\overline{1}$	\mathcal{C}_{i}	1, $\overline{1}$	$\overline{1} \triangleright 1$
2	\mathcal{C}_{2}	1,2	$2 \triangleright 1$
m	\mathcal{C}_{s}	1, m	$m \triangleright 1$
$2 / m$	$\mathcal{C}_{2 h}$	1, $2, \overline{1}$	$2 / m \triangleright 2 \triangleright 1$
222	\mathcal{D}_{2}	1, $2 z, 2_{y}$	$222 \triangleright 2 \triangleright 1$
$m m 2$	$\mathcal{C}_{2 v}$	$1,2_{z}, m_{y}$	$m m 2 \triangleright 2 \triangleright 1$
mmm	$\mathcal{D}_{2 h}$	1, $2_{z}, 2_{y}, \overline{1}$	$m m m \triangleright 222 \triangleright \ldots$
4	\mathcal{C}_{4}	1, $2_{z}, 4$	$4 \triangleright 2 \triangleright 1$
$\overline{4}$	\mathcal{S}_{4}	$1,2_{z}, \overline{4}$	$\overline{4} \triangleright 2 \triangleright 1$
$4 / m$	$\mathcal{C}_{4 h}$	$1,2_{z}, 4, \overline{1}$	$4 / m \triangleright 4 \triangleright \ldots$
422	\mathcal{D}_{4}	$1,2_{z}, 4,2_{y}$	$422 \triangleright 4 \triangleright \ldots$
4 mm	$\mathcal{C}_{4 v}$	$1,2_{z}, 4, m_{y}$	$4 m m \triangleright 4 \triangleright \ldots$
$\overline{4} 2 m$	$\mathcal{D}_{2 d}$	$1,2 z, \overline{4}, 2_{y}$	$\overline{4} 2 m \triangleright \overline{4} \triangleright \ldots$
4/mmm	$\mathcal{D}_{4 h}$	$1,2_{z}, 4,2_{y}, \overline{1}$	$4 / \mathrm{mmm} \triangleright 422 \triangleright \ldots$
23	\mathcal{T}	$1,2_{z}, 2_{y}, 3_{111}$	$23 \triangleright 222 \triangleright \ldots$
$m \overline{3}$	\mathcal{T}_{h}	$1,2_{z}, 2_{y}, 3_{111}, \overline{1}$	$m \overline{3} \triangleright 23 \triangleright \ldots$
432	\mathcal{O}	$1,2_{z}, 2_{y}, 3_{111}, 2_{110}$	$432 \triangleright 23 \triangleright \ldots$
$\overline{4} 3 m$	\mathcal{T}_{d}	$1,2_{z}, 2_{y}, 3_{111}, m_{1 \overline{10} 0}$	$\overline{4} 3 m \triangleright 23 \triangleright \ldots$
$m \overline{3} m$	\mathcal{O}_{h}	$1,2_{z}, 2_{y}, 3_{111}, 2_{110}, \overline{1}$	$m \overline{3} m \triangleright 432 \triangleright \ldots$

Generation of sub-hexagonal point groups

Composition series of hexagonal point groups and their subgroups

HM Symbol	SchoeSy	generators	compos. series
1	\mathcal{C}_{1}	1	1
3	\mathcal{C}_{3}	1,3	$3 \triangleright 1$
$\overline{3}$	\mathcal{S}_{6}	$1,3, \overline{1}$	$\overline{3} \triangleright 3 \triangleright 1$
32	\mathcal{D}_{3}	$1,3,2_{110}$	$32 \triangleright 3 \triangleright 1$
3 m	$\mathcal{C}_{3 v}$	1, 3, m_{110}	$3 m \triangleright 3 \triangleright 1$
$\overline{3} m$	$\mathcal{D}_{3 d}$	$1,3,2_{110}, \overline{1}$	$\overline{3} m \triangleright 32 \triangleright \ldots$
6	\mathcal{C}_{6}	$1,3,2 z$	$6 \triangleright 3 \triangleright 1$
$\overline{6}$	$\mathcal{C}_{3 h}$	1, 3, mz	$\overline{6} \triangleright 3 \triangleright 1$
6/m	$\mathcal{C}_{6 h}$	$1,2,2_{z}, \overline{1}$	$6 / m \triangleright 6 \triangleright \ldots$
622	\mathcal{D}_{6}	$1,3,2_{z}, 2_{110}$	$622 \triangleright 6 \triangleright \ldots$
6 mm	$\mathcal{C}_{6 v}$	$1,3,2_{z}, m_{110}$	$6 \mathrm{~mm} \triangleright 6 \triangleright \ldots$
$\overline{6} 2 m$	$\mathcal{D}_{3 h}$	$1,3, m_{z}, 2_{110}$	$\overline{6} 2 m \triangleright \overline{6} \triangleright \ldots$
$6 / \mathrm{mmm}$	$\mathcal{D}_{6}{ }^{\text {h }}$	$1,3,2_{z}, 2_{110}, \overline{1}$	$6 / \mathrm{mmm} \triangleright 622 \triangleright \ldots$

Problem I.6.I.I6

Generate the symmetry operations of the group 4/mmm following its composition series.

Generate the symmetry operations of the group $\overline{3} m$ following its composition series.

